ที่ดีที่สุด Forex -trading- อัลกอริทึม

ที่ดีที่สุด Forex -trading- อัลกอริทึม

Forex- CZK - PLN
จะ เป็นผู้บริหาร สต็อก ตัวเลือก ที่เกี่ยวข้อง กับ - รายได้ในอนาคต
Bollinger   วง รุ่น


Forex- ตลาด SlideShare ข้อเสีย ของ หุ้น ตัวเลือก สำหรับ พนักงาน Forex- ปากคีบ ตัวบ่งชี้ วัน ซื้อขาย สัปดาห์ ตัวเลือก Black- สุนัข ซื้อขาย ระบบ ดาวน์โหลด ฟรี Binary ตัวเลือก โบรกเกอร์ ขั้นต่ำ ค้า

พื้นฐานของการซื้อขายขั้นตอนแบบ Forex เกือบสามสิบปีที่ผ่านมาตลาดแลกเปลี่ยนเงินตราต่างประเทศ (Forex) มีลักษณะการซื้อขายผ่านทางโทรศัพท์นักลงทุนสถาบัน ข้อมูลราคาที่ขุ่น, ความแตกต่างที่ชัดเจนระหว่างการซื้อขาย interdealer และการซื้อขายตัวแทนจำหน่ายของลูกค้าและความเข้มข้นของตลาดต่ำ วันนี้ความก้าวหน้าทางเทคโนโลยีได้เปลี่ยนตลาด การทำธุรกรรมผ่านทางคอมพิวเตอร์ทำให้ผู้ค้าปลีกสามารถเข้าสู่ตลาดได้ทันเวลาราคาสตรีมมิ่งเรียลไทม์ทำให้เกิดความโปร่งใสมากขึ้นและความแตกต่างระหว่างตัวแทนจำหน่ายกับลูกค้าที่มีความซับซ้อนมากที่สุดของพวกเขาก็หายไปอย่างมาก การเปลี่ยนแปลงที่สำคัญอย่างหนึ่งคือการแนะนำการค้าอัลกอริทึม ซึ่งในขณะที่การปรับปรุงที่สำคัญในการทำงานของการซื้อขาย Forex ยัง poses จำนวนของความเสี่ยง เมื่อมองพื้นฐานของตลาด Forex และการซื้อขายแบบอัลกอริธึมเราจะระบุข้อได้เปรียบบางอย่างที่เป็นประโยชน์ทำให้การซื้อขายสกุลเงินเป็นไปตามการซื้อขายสกุลเงินในขณะเดียวกันก็ชี้ให้เห็นถึงความเสี่ยงบางประการ Forex เป็นสถานที่เสมือนจริงที่คู่ค้าสกุลเงินซื้อขายในปริมาณที่ต่างกันไปตามราคาที่เสนอโดยสกุลเงินหลักจะได้รับราคาเป็นสกุลเงินอ้างอิง การดำเนินงานตลอด 24 ชั่วโมงทุกวันเป็นเวลา 5 วันต่อสัปดาห์ Forex ถือเป็นตลาดการเงินที่ใหญ่ที่สุดและใหญ่ที่สุดในโลก สำหรับธนาคารเพื่อการชำระหนี้ระหว่างประเทศ (BIS) ปริมาณการซื้อขายเฉลี่ยต่อวันในเดือนเมษายน 2556 เป็น 2.0 ล้านล้านดอลลาร์ การค้าขายครั้งนี้ทำเพื่อเงินดอลลาร์สหรัฐยูโรและเงินเยนของญี่ปุ่นและมีผู้เล่นหลายรายรวมถึงธนาคารเอกชนธนาคารกลางและกองทุนบำเหน็จบำนาญ นักลงทุนสถาบัน บริษัท ขนาดใหญ่ บริษัท ทางการเงินและผู้ค้าปลีกรายย่อย แม้ว่าการซื้อขายเก็งกำไรอาจเป็นแรงจูงใจหลักสำหรับนักลงทุนบางรายเหตุผลหลักสำหรับการดำรงอยู่ของตลาด Forex ก็คือผู้คนจำเป็นต้องซื้อขายสกุลเงินเพื่อที่จะซื้อสินค้าและบริการจากต่างประเทศ กิจกรรมในตลาด Forex มีผลต่ออัตราแลกเปลี่ยนที่แท้จริงและอาจส่งผลกระทบอย่างมากต่อผลผลิตการจ้างงานเงินเฟ้อและเงินทุนไหลเข้าของประเทศใดประเทศหนึ่ง ด้วยเหตุนี้ผู้กำหนดนโยบายสาธารณะและสื่อต่างๆจึงมีส่วนได้เสียในสิ่งที่เกิดขึ้นในตลาด Forex พื้นฐานของการค้าอัลกอริทึมอัลกอริธึมเป็นชุดของกฎเฉพาะที่ออกแบบมาเพื่อให้งานที่กำหนดไว้อย่างชัดเจน ในการซื้อขายในตลาดการเงินคอมพิวเตอร์ดำเนินขั้นตอนวิธีที่ผู้ใช้กำหนดโดยมีชุดของกฎประกอบด้วยพารามิเตอร์ต่างๆเช่นจังหวะราคาหรือปริมาณที่กำหนดโครงสร้างการค้าที่จะทำ มีอยู่สี่ประเภทพื้นฐานของการค้าขายอัลกอริทึมในตลาดการเงิน: สถิติการป้องกันความเสี่ยงอัตโนมัติอัลกอริธึมกลยุทธ์การดำเนินงานและการเข้าถึงตลาดโดยตรง สถิติหมายถึงกลยุทธ์แบบอัลกอริธึมซึ่งมองหาโอกาสการค้าที่ทำกำไรจากการวิเคราะห์ทางสถิติของข้อมูลชุดข้อมูลทางประวัติศาสตร์ การป้องกันความเสี่ยงโดยอัตโนมัติเป็นกลยุทธ์ที่สร้างกฎเพื่อลดความเสี่ยงของผู้ค้า เป้าหมายของกลยุทธ์การปฏิบัติตามอัลกอริธึมคือการดำเนินการตามวัตถุประสงค์ที่กำหนดไว้ล่วงหน้าเช่นลดผลกระทบจากตลาดหรือดำเนินการทางการค้าได้อย่างรวดเร็ว สุดท้ายการเข้าถึงตลาดแบบตรงจะอธิบายถึงความเร็วที่ดีที่สุดและต้นทุนต่ำกว่าที่ผู้ค้าอัลกอริทึมสามารถเข้าถึงและเชื่อมต่อกับแพลตฟอร์มการซื้อขายต่างๆได้ หนึ่งในหมวดย่อยของการซื้อขายแบบอัลกอริทึมคือการซื้อขายความถี่สูงซึ่งมีลักษณะเป็นความถี่ที่สูงมากสำหรับการประมวลผลใบสั่งซื้อ การซื้อขายความเร็วสูงสามารถให้ประโยชน์อย่างมากแก่ผู้ค้าโดยให้ความสามารถในการค้าภายในมิลลิวินาทีของการเปลี่ยนแปลงราคาที่เพิ่มขึ้น แต่อาจมีความเสี่ยงบางอย่าง การค้าอัลกอริธึมในตลาด Forex การเติบโตของการซื้อขายแบบอัลกอริธึมในตลาด Forex ในช่วงหลายปีที่ผ่านมามีสาเหตุมาจากอัลกอริทึมอัตโนมัติบางกระบวนการและลดชั่วโมงที่ต้องทำธุรกรรมแลกเปลี่ยนเงินตราต่างประเทศ ประสิทธิภาพที่สร้างขึ้นโดยระบบอัตโนมัติทำให้ต้นทุนในการดำเนินการเหล่านี้ลดลง หนึ่งในกระบวนการดังกล่าวคือการดำเนินการสั่งซื้อสินค้า โดยอัตโนมัติกระบวนการซื้อขายด้วยอัลกอริทึมที่ซื้อขายตามเกณฑ์ที่กำหนดไว้ล่วงหน้าเช่นการดำเนินการคำสั่งซื้อในช่วงระยะเวลาที่กำหนดหรือในราคาที่กำหนดจะมีประสิทธิภาพมากกว่าการดำเนินการโดยมนุษย์ด้วยตนเองอย่างมีนัยสำคัญ ธนาคารยังใช้ประโยชน์จากอัลกอริทึมที่ได้รับการตั้งโปรแกรมเพื่ออัพเดทราคาของคู่สกุลเงินบนแพลตฟอร์มการซื้อขายอิเล็กทรอนิกส์ อัลกอริธึมเหล่านี้จะเพิ่มความเร็วที่ธนาคารสามารถเสนอราคาตลาดในขณะที่ลดจำนวนชั่วโมงการทำงานด้วยตนเองในราคาเสนอ บางขั้นตอนของโปรแกรมธนาคารเพื่อลดความเสี่ยงของพวกเขาที่จะเสี่ยง อัลกอริทึมอาจใช้ในการขายสกุลเงินหนึ่งเพื่อให้ตรงกับการค้าของลูกค้าซึ่งธนาคารซื้อเงินที่เท่ากันเพื่อที่จะรักษาปริมาณเงินคงที่ของสกุลเงินนั้นไว้ได้ ซึ่งจะช่วยให้ธนาคารสามารถรักษาระดับความเสี่ยงที่ระบุไว้ล่วงหน้าสำหรับการถือครองสกุลเงินนั้นได้ กระบวนการเหล่านี้ได้รับการทำอย่างมีนัยสำคัญมีประสิทธิภาพมากขึ้นโดยใช้ขั้นตอนวิธีการที่นำไปสู่การลดค่าใช้จ่ายในการทำธุรกรรม อย่างไรก็ตามนี่ไม่ใช่ปัจจัยเดียวที่ผลักดันการเติบโตของการซื้อขายแบบ Forex algorithmic อัลกอริธึมถูกใช้เพื่อการซื้อขายเก็งกำไรมากขึ้นเนื่องจากการรวมกันของความถี่สูงและความสามารถของอัลกอริทึมในการตีความข้อมูลและเรียกใช้คำสั่งซื้อทำให้ผู้ค้าสามารถใช้โอกาสในการเก็งกำไรที่เกิดจากการเบี่ยงเบนราคาระหว่างคู่สกุลเงินได้เล็กน้อย ข้อดีทั้งหมดนี้นำไปสู่การใช้อัลกอริธึมในตลาด Forex มากขึ้น แต่ให้ความสำคัญกับความเสี่ยงที่เกิดขึ้นกับการซื้อขายแบบอัลกอริทึม ความเสี่ยงที่เกี่ยวข้องกับการค้าขายอัลกอริธึมโฟลิกแม้ว่าการค้าอัลกอริธึมได้ทำการปรับปรุงหลายครั้ง แต่ก็มีข้อเสียที่อาจส่งผลต่อความมั่นคงและสภาพคล่องของตลาด Forex ข้อเสียอย่างหนึ่งดังกล่าวเกี่ยวข้องกับความไม่สมดุลในอำนาจการค้าของผู้เข้าร่วมตลาด ผู้เข้าร่วมบางคนมีวิธีการที่จะได้รับเทคโนโลยีที่ซับซ้อนซึ่งจะช่วยให้พวกเขาได้รับข้อมูลและดำเนินการคำสั่งซื้อด้วยความเร็วที่รวดเร็วกว่าคนอื่น ๆ ความไม่สมดุลระหว่างความจำเป็นและความไม่เท่าเทียมในแง่ของเทคโนโลยีอัลกอริธึมที่ซับซ้อนที่สุดอาจทำให้เกิดการกระจายตัวภายในตลาดซึ่งอาจนำไปสู่การขาดแคลนสภาพคล่องในช่วงเวลาหนึ่ง นอกจากนี้ในขณะที่มีความแตกต่างพื้นฐานระหว่างตลาดหุ้นและตลาด Forex มีบางคนที่กลัวว่าการซื้อขายความถี่สูงที่ exacerbated ตลาดหุ้นตกแฟลชเมื่อวันที่ 6 พฤษภาคม 2010 อาจส่งผลต่อตลาด Forex เช่นกัน เนื่องจากอัลกอริทึมเป็นโปรแกรมสำหรับสถานการณ์ตลาดที่เฉพาะเจาะจงพวกเขาอาจไม่สามารถตอบสนองได้อย่างรวดเร็วหากตลาดมีการเปลี่ยนแปลงอย่างมาก เพื่อหลีกเลี่ยงสถานการณ์นี้ตลาดอาจต้องได้รับการตรวจสอบและการค้าอัลกอริธึมระงับเนื่องจากความผันผวนของตลาด อย่างไรก็ตามในสถานการณ์ที่รุนแรงดังกล่าวการระงับการซื้อขายแบบอัลกอลิกึมโดยผู้เข้าร่วมตลาดจำนวนมากอาจส่งผลให้เกิดความผันผวนสูงและการลดลงของสภาพคล่องในตลาดอย่างมาก ด้านล่างแม้ว่าการค้าอัลกอริธึมสามารถเพิ่มประสิทธิภาพได้ดังนั้นการลดต้นทุนในการซื้อขายสกุลเงิน แต่ก็มีความเสี่ยงเพิ่มขึ้น สำหรับสกุลเงินที่สามารถทำงานได้อย่างถูกต้องต้องมีร้านค้าที่มั่นคงและมีสภาพคล่องสูง ดังนั้นจึงเป็นสิ่งสำคัญที่ตลาด Forex ยังคงสภาพคล่องด้วยความผันผวนของราคาต่ำ เช่นเดียวกับทุกด้านของชีวิตเทคโนโลยีใหม่ ๆ จะนำมาซึ่งประโยชน์มากมาย แต่ก็มีความเสี่ยงใหม่ ความท้าทายสำหรับอนาคตของการซื้อขายแบบอัลกอริธึมโฟจะเป็นวิธีที่จะทำให้เกิดการเปลี่ยนแปลงที่ทำให้เกิดประโยชน์สูงสุดในขณะที่ลดความเสี่ยงพื้นฐานของการซื้อขายอัลกอริทึม: แนวคิดและตัวอย่างอัลกอริทึมคือชุดคำสั่งที่กำหนดไว้อย่างชัดเจนเพื่อที่จะดำเนินงานหรือกระบวนการ . การค้าอัลกอริธึม (การซื้อขายแบบอัตโนมัติการซื้อขายกล่องดำหรือการซื้อขายแบบอัลกอฮอล) เป็นกระบวนการของการใช้คอมพิวเตอร์ที่ตั้งโปรแกรมให้ทำตามคำแนะนำที่กำหนดไว้สำหรับการวางการค้าเพื่อสร้างผลกำไรด้วยความเร็วและความถี่ที่เป็นไปไม่ได้สำหรับ พ่อค้ามนุษย์ ชุดของกฎที่กำหนดขึ้นอยู่กับระยะเวลาราคาปริมาณหรือรูปแบบทางคณิตศาสตร์ใด ๆ นอกเหนือจากโอกาสในการทำกำไรสำหรับผู้ประกอบการค้าแล้วการค้าประเวณีจะทำให้ตลาดมีสภาพคล่องมากขึ้นและทำให้การค้าขายเป็นไปอย่างเป็นระบบมากยิ่งขึ้นโดยไม่ใช้ผลกระทบจากอารมณ์ของมนุษย์ต่อกิจกรรมการค้า สมมติว่าผู้ค้าทำตามเงื่อนไขการค้าแบบง่ายๆเหล่านี้: ซื้อหุ้น 50 หุ้นเมื่อค่าเฉลี่ยเคลื่อนที่ 50 วันสูงกว่าค่าเฉลี่ยเคลื่อนที่ 200 วันขายหุ้นของหุ้นเมื่อค่าเฉลี่ยเคลื่อนที่ของ 50 วันต่ำกว่าค่าเฉลี่ยเคลื่อนที่ 200 วัน การใช้ชุดคำสั่งง่ายๆสองชุดนี้เป็นเรื่องง่ายที่จะเขียนโปรแกรมคอมพิวเตอร์ซึ่งจะตรวจสอบราคาหุ้น (และตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่) โดยอัตโนมัติและวางคำสั่งซื้อและขายเมื่อเงื่อนไขที่กำหนดไว้ ผู้ประกอบการไม่จำเป็นต้องคอยเฝ้าดูราคาและกราฟสดอีกต่อไปหรือสั่งซื้อด้วยตนเอง ระบบการซื้อขายแบบอัลกอทิกซ์จะดำเนินการโดยอัตโนมัติสำหรับเขาโดยระบุโอกาสทางการค้าได้อย่างถูกต้อง (สำหรับข้อมูลเพิ่มเติมเกี่ยวกับค่าเฉลี่ยเคลื่อนที่โปรดดูที่: Simple Moving Averages ทำให้เทรนด์โดดเด่น) Algo-trading ให้ประโยชน์ต่อไปนี้: ธุรกรรมที่ดำเนินการในราคาที่ดีที่สุดการจัดตำแหน่งทางการค้าทันทีและถูกต้อง (มีโอกาสสูงในการดำเนินการในระดับที่ต้องการ) Trades (ดูตัวอย่างการขาดการดำเนินการด้านล่าง) การตรวจสอบอัตโนมัติแบบอัตโนมัติในสภาวะตลาดหลาย ๆ เงื่อนไขลดความเสี่ยงของข้อผิดพลาดด้วยตนเองในการวางธุรกิจการค้า Backtest อัลกอริทึมนี้ขึ้นอยู่กับข้อมูลทางประวัติศาสตร์และข้อมูลเรียลไทม์ที่มีอยู่ลดลง ความเป็นไปได้ที่จะเกิดความผิดพลาดจากผู้ค้ามนุษย์ขึ้นอยู่กับปัจจัยทางด้านอารมณ์และจิตใจส่วนที่สำคัญที่สุดของการซื้อขายสินค้าอัลกอฮอลในปัจจุบันคือการซื้อขายด้วยความถี่สูง (HFT) ซึ่งพยายามที่จะใช้คำสั่งซื้อจำนวนมากที่ความเร็วอย่างรวดเร็วในหลายตลาด พารามิเตอร์ตามคำแนะนำที่ตั้งไว้ล่วงหน้า (สำหรับข้อมูลเพิ่มเติมเกี่ยวกับการซื้อขายความถี่สูงโปรดดูที่: กลยุทธ์และความลับของ บริษัท การค้า High Frequency Trading (HFT)) การค้าขาย Algo ใช้ในรูปแบบต่างๆของการซื้อขายและการลงทุนรวมถึง: นักลงทุนระยะกลางหรือระยะยาว , กองทุนรวม บริษัท ประกัน) ที่ซื้อหุ้นในปริมาณมาก แต่ไม่ต้องการมีอิทธิพลต่อราคาหุ้นด้วยการลงทุนที่ไม่ต่อเนื่องปริมาณมาก ผู้ค้าระยะสั้นและผู้ขาย (นักลงทุนในตลาดนักเก็งกำไรและ arbitrageurs) ได้รับประโยชน์จากการดำเนินการทางการค้าโดยอัตโนมัตินอกจากนี้ algo-trading aids ในการสร้างสภาพคล่องที่เพียงพอสำหรับผู้ขายในตลาด ผู้ค้าที่มีระบบ (ผู้ติดตามแนวโน้มคู่ค้ากองทุนป้องกันความเสี่ยง ฯลฯ ) พบว่ามีประสิทธิภาพมากขึ้นในการตั้งกฎการซื้อขายของตนและให้การค้าโปรแกรมโดยอัตโนมัติ การซื้อขายแบบอัลกอริธึมช่วยให้การซื้อขายหลักทรัพย์เป็นไปอย่างเป็นระบบมากกว่าวิธีการที่อาศัยสัญชาตญาณของพ่อค้ามนุษย์หรือสัญชาตญาณ กลยุทธ์การค้าอัลกอริธึมกลยุทธ์สำหรับการซื้อขายแบบอัลกอริธึมจะต้องมีโอกาสที่ระบุซึ่งเป็นประโยชน์ในแง่ของรายได้ที่เพิ่มขึ้นหรือลดต้นทุน ต่อไปนี้เป็นกลยุทธ์การซื้อขายทั่วไปที่ใช้ในการซื้อขายแบบอัลกอฮอร์: กลยุทธ์การซื้อขายตามอัลกอริธึมที่พบมากที่สุดจะเป็นไปตามแนวโน้มการเคลื่อนที่โดยเฉลี่ย breakouts ช่อง การเคลื่อนไหวในระดับราคาและตัวชี้วัดทางเทคนิคที่เกี่ยวข้อง นี่คือกลยุทธ์ที่ง่ายที่สุดและง่ายที่สุดในการดำเนินการผ่านทางการค้าอัลกอริทึมเนื่องจากกลยุทธ์เหล่านี้ไม่เกี่ยวข้องกับการคาดการณ์หรือการคาดการณ์ราคาใด ๆ การค้าจะเริ่มขึ้นอยู่กับการเกิดแนวโน้มที่พึงประสงค์ ซึ่งง่ายและตรงไปตรงมาในการดำเนินการผ่านอัลกอริทึมโดยไม่ต้องเข้าสู่ความซับซ้อนของการวิเคราะห์เชิงพยากรณ์ ตัวอย่างเช่นค่าเฉลี่ยเคลื่อนที่ 50 และ 200 วันเป็นกลยุทธ์ที่นิยมใช้กันต่อไป (สำหรับข้อมูลเพิ่มเติมเกี่ยวกับกลยุทธ์การซื้อขายเทรนด์โปรดดูที่: Simple Strategies for Capitalising on Trends) การซื้อหุ้นที่จดทะเบียนในตลาดหลักทรัพย์ในราคาที่ต่ำกว่าในตลาดเดียวและขายพร้อมกันในราคาที่สูงขึ้นในตลาดอื่น ๆ จะทำให้ราคาแตกต่างกันไปในระดับที่ปราศจากความเสี่ยง หรือการเก็งกำไร การดำเนินการเดียวกันสามารถทำซ้ำสำหรับหุ้นเมื่อเทียบกับเครื่องมือฟิวเจอร์สเนื่องจากความแตกต่างของราคามีอยู่เป็นครั้งคราว การใช้อัลกอริทึมเพื่อระบุความแตกต่างของราคาดังกล่าวและการวางคำสั่งซื้อจะช่วยให้มีโอกาสทำกำไรได้อย่างมีประสิทธิภาพ กองทุนดัชนีได้กำหนดระยะเวลาการปรับสมดุลใหม่เพื่อนำการถือครองของตนไปเทียบกับดัชนีอ้างอิงที่เกี่ยวข้อง ซึ่งจะสร้างโอกาสที่เป็นประโยชน์สำหรับผู้ค้าปลีกแบบอัลกอริธึมที่ใช้ประโยชน์จากธุรกิจการค้าที่คาดว่าจะมีกำไรจากฐาน 20-80 จุดขึ้นอยู่กับจำนวนหุ้นในกองทุนดัชนีก่อนที่จะมีการปรับสมดุลของดัชนีใหม่ ธุรกิจการค้าดังกล่าวเริ่มต้นผ่านระบบการซื้อขายแบบอัลกอรึทึมสำหรับการดำเนินการในเวลาที่เหมาะสมและราคาที่ดีที่สุด โมเดลทางคณิตศาสตร์ที่ได้รับการพิสูจน์แล้วมากมายเช่นกลยุทธ์การซื้อขายเดลต้าเป็นกลางซึ่งจะช่วยให้สามารถซื้อขายหลักทรัพย์ได้ด้วยตัวเลือกและการรักษาความปลอดภัยขั้นพื้นฐาน ที่ธุรกิจการค้าจะถูกวางไว้เพื่อชดเชย deltas บวกและลบเพื่อให้เดลต้าผลงานอยู่ที่ศูนย์ กลยุทธ์การพลิกกลับหมายถึงขึ้นอยู่กับแนวคิดที่ว่าราคาของสินทรัพย์สูงและต่ำเป็นปรากฏการณ์ชั่วคราวที่กลับคืนสู่ค่าเฉลี่ยของพวกเขาเป็นระยะ ๆ การระบุและการกำหนดช่วงราคาและการใช้อัลกอริทึมขึ้นอยู่กับว่าจะอนุญาตให้ธุรกิจการค้าสามารถวางขายได้โดยอัตโนมัติเมื่อราคาของสินทรัพย์อยู่ในและนอกช่วงที่กำหนด กลยุทธ์ราคาตลาดถัวเฉลี่ยถ่วงน้ำหนักของปริมาณแบ่งคำสั่งซื้อจำนวนมากและเผยแพร่ชิ้นเล็กลงที่มีการกำหนดรูปแบบไดนามิกไปยังตลาดโดยใช้โปรไฟล์ปริมาณการขายในอดีตที่เฉพาะเจาะจง จุดมุ่งหมายคือการดำเนินการคำสั่งซื้อใกล้เคียงกับราคาเฉลี่ยถ่วงน้ำหนัก (Volume Weighted Average Price - VWAP) ซึ่งจะได้ประโยชน์จากราคาเฉลี่ย กลยุทธ์ราคาถัวเฉลี่ยถ่วงน้ำหนักในช่วงเวลาแบ่งคำสั่งซื้อที่มีขนาดใหญ่และเผยแพร่ชิ้นเล็ก ๆ ที่มีขนาดเล็กลงเพื่อให้ได้ตามตลาดโดยใช้ช่วงเวลาที่แบ่งกันระหว่างช่วงเริ่มต้นและสิ้นสุด เป้าหมายคือการดำเนินการตามคำสั่งใกล้เคียงกับราคาเฉลี่ยระหว่างเวลาเริ่มต้นและเวลาสิ้นสุดซึ่งจะช่วยลดผลกระทบของตลาด จนกว่าคำสั่งซื้อจะได้รับการเติมเต็มขั้นตอนนี้จะยังคงส่งใบสั่งซื้อบางส่วนตามอัตราส่วนการมีส่วนร่วมที่กำหนดไว้และตามปริมาณการซื้อขายในตลาด กลยุทธ์ขั้นตอนที่เกี่ยวข้องจะส่งคำสั่งซื้อตามเปอร์เซ็นต์ของปริมาณตลาดที่ผู้ใช้กำหนดและเพิ่มหรือลดอัตราการมีส่วนร่วมนี้เมื่อราคาหุ้นถึงระดับที่กำหนดโดยผู้ใช้ กลยุทธ์การขาดแคลนการดำเนินงานมีวัตถุประสงค์เพื่อลดต้นทุนการดำเนินการของคำสั่งซื้อด้วยการปิดตลาดเรียลไทม์ทำให้ประหยัดค่าใช้จ่ายในการสั่งซื้อและได้รับประโยชน์จากต้นทุนที่เสียโอกาสในการดำเนินการล่าช้า กลยุทธ์จะเพิ่มอัตราการมีส่วนร่วมที่กำหนดไว้เมื่อราคาหุ้นปรับตัวดีขึ้นและลดลงเมื่อราคาหุ้นปรับตัวสูงขึ้น มีขั้นตอนวิธีพิเศษบางอย่างที่พยายามระบุเหตุการณ์ที่เกิดขึ้นในอีกด้านหนึ่ง อัลกอริทึมการดัดแปลงเหล่านี้ใช้ตัวอย่างเช่นโดยผู้ทำการตลาดด้านการขายมีสติปัญญาในตัวเพื่อระบุการดำรงอยู่ของอัลกอริทึมใด ๆ ในด้านการซื้อของใบสั่งขนาดใหญ่ การตรวจสอบผ่านอัลกอริทึมจะช่วยให้ผู้ทำการตลาดสามารถระบุโอกาสในการสั่งซื้อที่มีขนาดใหญ่และช่วยให้เขาได้รับประโยชน์จากการกรอกคำสั่งซื้อในราคาที่สูงขึ้น นี่เป็นบางครั้งเรียกว่าด้านหน้าที่มีเทคโนโลยีสูง (หากต้องการข้อมูลเพิ่มเติมเกี่ยวกับการซื้อขายด้วยความถี่สูงและการหลอกลวงโปรดดูที่: หากคุณซื้อหุ้นออนไลน์คุณมีส่วนร่วมใน HFTs) ข้อกำหนดทางเทคนิคสำหรับการซื้อขายขั้นตอนวิธีการใช้อัลกอริทึมโดยใช้โปรแกรมคอมพิวเตอร์เป็นส่วนสุดท้ายซึ่งถูกแบ็คกราวด์ด้วยการทำ backtesting ความท้าทายคือการเปลี่ยนกลยุทธ์ที่ระบุไว้ในกระบวนการทางคอมพิวเตอร์รวมที่สามารถเข้าถึงบัญชีการซื้อขายสำหรับการสั่งซื้อได้ โปรแกรมเมอร์ที่ได้รับการว่าจ้างหรือซอฟต์แวร์ซื้อขายที่ทำไว้ล่วงหน้าการเชื่อมต่อเครือข่ายและการเข้าถึงแพลตฟอร์มการซื้อขายสำหรับการวางคำสั่งซื้อการเข้าถึงข้อมูลข้อมูลตลาดที่จะได้รับการตรวจสอบตามอัลกอริทึมสำหรับโอกาสในการวาง ความสามารถและโครงสร้างพื้นฐานในการ backtest ระบบที่สร้างขึ้นก่อนที่จะไปอยู่บนตลาดจริงข้อมูลทางประวัติศาสตร์ที่มีอยู่สำหรับ backtesting ขึ้นอยู่กับความซับซ้อนของกฎที่ใช้ในขั้นตอนต่อไปนี้เป็นตัวอย่างที่ครอบคลุม: Royal Dutch Shell (RDS) Stock Exchange (AEX) และตลาดหลักทรัพย์ลอนดอน (LSE) ช่วยให้สามารถสร้างอัลกอริทึมเพื่อระบุโอกาสในการเก็งกำไร นี่เป็นข้อสังเกตที่น่าสนใจบางส่วน: การซื้อขาย AEX ในสกุลเงินยูโรในขณะที่ธุรกิจการค้าของ LSE ในสกุลปอนด์สเตอร์ลิงเนื่องจากความแตกต่างของเวลาหนึ่งชั่วโมง AEX เปิดให้บริการเมื่อเร็ว ๆ นี้เมื่อเทียบกับ LSE ตามด้วยตลาดหุ้นทั้งสองมีการซื้อขายพร้อมกันสำหรับสองสามชั่วโมงถัดไปและซื้อขายเฉพาะใน LSE ในช่วง ชั่วโมงสุดท้ายที่ AEX ปิดเราสามารถสำรวจความเป็นไปได้ของการซื้อขายเก็งกำไรใน Royal Dutch Shell หุ้นจดทะเบียนในตลาดทั้งสองนี้ในสองสกุลเงินที่แตกต่างกันโปรแกรมคอมพิวเตอร์ที่สามารถอ่านราคาในตลาดปัจจุบันฟีดราคาจากทั้งสอง LSE และ AEX อัตราฟีดอัตราแลกเปลี่ยนสำหรับ อัตราแลกเปลี่ยน GBP-EUR ความสามารถในการสั่งซื้อเพื่อสั่งการแลกเปลี่ยนความถูกต้องความสามารถในการทดสอบย้อนกลับในฟีดราคาย้อนหลังโปรแกรมคอมพิวเตอร์ควรปฏิบัติดังนี้: อ่านฟีดราคาที่รับเข้าของสต็อค RDS จากทั้งสองฝ่ายโดยใช้อัตราแลกเปลี่ยนเงินตราต่างประเทศที่มีอยู่ . แปลงราคาของสกุลเงินหนึ่งไปยังอีกหากมีความแตกต่างของราคามากพอ (ลดค่านายหน้า) นำไปสู่โอกาสที่มีกำไรจากนั้นวางคำสั่งซื้อในใบสั่งซื้อที่ต่ำกว่าและใบสั่งขายในราคาที่สูงกว่าถ้าใบสั่งซื้อดำเนินการเป็น ที่ต้องการกำไรการเก็งกำไรจะเป็นไปตามแบบง่ายและใช้งานง่าย แต่การปฏิบัติของการค้าอัลกอริธึมไม่ง่ายที่จะรักษาและดำเนินการ โปรดจำไว้ว่าหากคุณสามารถวางการค้าที่สร้างโดยอัลกอฮ์ผู้เข้าร่วมการตลาดอื่น ๆ จะสามารถเข้าร่วมได้ ดังนั้นราคาจึงมีความผันผวนในมิลลิลิตรและแม้แต่ไมโครวินาที ในตัวอย่างข้างต้นสิ่งที่เกิดขึ้นหากการซื้อขายซื้อของคุณได้รับการดำเนินการ แต่การขายไม่ได้เป็นราคาขายเปลี่ยนแปลงตามเวลาที่สั่งซื้อของคุณฮิตตลาดคุณจะสิ้นสุดการนั่งกับตำแหน่งที่เปิด ทำให้กลยุทธ์การเก็งกำไรของคุณไร้ค่า มีความเสี่ยงและความท้าทายเพิ่มขึ้นเช่นความเสี่ยงของความล้มเหลวของระบบข้อผิดพลาดในการเชื่อมต่อเครือข่ายความล่าช้าในเวลาระหว่างการสั่งซื้อสินค้าและการดำเนินการและที่สำคัญที่สุดคืออัลกอริทึมที่ไม่สมบูรณ์ อัลกอริธึมที่มีความซับซ้อนมากขึ้นต้องใช้การทดสอบย้อนหลังที่เข้มงวดมากขึ้นก่อนที่จะมีการใช้งาน การวิเคราะห์เชิงปริมาณของการทำงานของอัลกอริทึมมีบทบาทสำคัญและควรได้รับการตรวจสอบอย่างละเอียด มันน่าตื่นเต้นที่จะไปสำหรับระบบอัตโนมัติช่วยโดยคอมพิวเตอร์ที่มีความคิดที่จะทำเงินได้อย่างง่ายดาย แต่ต้องแน่ใจว่าระบบได้รับการทดสอบอย่างละเอียดและกำหนดข้อ จำกัด ไว้ ผู้ค้าวิเคราะห์ควรพิจารณาการเรียนรู้ระบบการเขียนโปรแกรมและการสร้างด้วยตัวเองเพื่อให้มั่นใจในการใช้กลยุทธ์ที่เหมาะสมในลักษณะที่ไม่สามารถเข้าใจได้ การใช้อย่างรอบคอบและการทดสอบอย่างละเอียดของการซื้อขายสัญญาซื้อขายล่วงหน้าสามารถสร้างโอกาสที่ทำกำไรได้ ประเภทของโครงสร้างค่าตอบแทนที่ผู้จัดการกองทุนป้องกันความเสี่ยงมักใช้ในการชดเชยผลตอบแทนจากผลการปฏิบัติงาน การป้องกันการสูญเสียรายได้ซึ่งจะส่งผลให้ผู้เอาประกันภัยเสียชีวิต ผู้รับประโยชน์ชื่อได้รับ การวัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการสินค้าและการเปลี่ยนแปลงราคา ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณโดยการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ จะมีการสั่งซื้อแบบ จำกัด วงเงิน StopCron Genetic Algorithm ในระบบการซื้อขาย FOREX โดยใช้อัลกอริทึมทางพันธุกรรมเพื่อสร้างกลยุทธ์การซื้อขาย FOREX Trading ที่มีกำไร อัลกอริทึมทางพันธุกรรมในโครงข่ายประสาทเทียมซอฟท์แวร์เครือข่ายประสาทเทียมสำหรับการคำนวณทางพันธุกรรมโดยใช้ Forex trading ตัวอย่างนี้ใช้แนวคิดและแนวคิดของบทความก่อน ๆ ดังนั้นโปรดอ่านอัลกอริธึมพันธุกรรมเครือข่ายประสาทเทียมในระบบการซื้อขาย FOREX ก่อน แต่ก็ไม่จำเป็น เกี่ยวกับข้อความนี้ก่อนอื่นโปรดอ่านข้อจำกัดความรับผิดชอบ นี่คือตัวอย่างของการใช้ฟังก์ชันการทำงานของอัลกอริธึมทางพันธุกรรมของ Cortex Neural Networks Software ไม่ใช่ตัวอย่างของวิธีการทำกำไรจากการซื้อขาย ฉันไม่ใช่คุณครูของฉันและฉันไม่ควรเป็นผู้รับผิดชอบต่อความสูญเสียของคุณ Cortex Neural Networks Software มีเครือข่ายประสาทในนั้นและ FFBP ที่เรากล่าวถึงก่อนเป็นเพียงวิธีหนึ่งในการเลือกกลยุทธ์การซื้อขายแบบเทรด มันเป็นเทคนิคที่ดีมีประสิทธิภาพและเมื่อใช้อย่างถูกต้องมาก promicing อย่างไรก็ตามมีปัญหา - เพื่อสอนเครือข่ายประสาทเทียม เราจำเป็นต้องทราบผลลัพธ์ที่ต้องการ มันค่อนข้างง่ายที่จะทำเมื่อเราทำประมาณค่าเราเพียงแค่ใช้ค่าที่แท้จริงของฟังก์ชันเพราะเรารู้ว่ามันควรจะเป็น เมื่อเราทำโครงข่ายประสาทเทียม เราใช้เทคนิค (อธิบายไว้ในบทความก่อนหน้านี้) ในการสอนเครือข่ายประสาทเทียมเกี่ยวกับประวัติศาสตร์อีกครั้งหนึ่งถ้าเราคาดการณ์ว่าเป็นอัตราแลกเปลี่ยนที่เรารู้ (ในระหว่างการฝึกอบรม) ว่าทำนายถูกต้องอย่างไร อย่างไรก็ตามเมื่อเรากำลังสร้างระบบการซื้อขายเราไม่มีความคิดว่าการตัดสินใจทางการค้าที่ถูกต้องคือแม้ว่าเราจะรู้อัตราแลกเปลี่ยนแล้ว แต่ในความเป็นจริงเรามีกลยุทธ์การซื้อขายแบบเทรดหลายอย่างที่เราสามารถใช้ได้ตลอดเวลาและ เราควรจะหาข้อมูลที่ดีที่สุดได้อย่างไรเราควรให้อาหารเท่าที่ต้องการจากกระดาษคำนวณของเราหรือไม่ถ้าคุณทำตามบทความก่อนหน้านี้ของเราคุณรู้ว่าเราโกงเพื่อรับมือกับปัญหานี้แล้ว เราได้สอนเครือข่ายประสาทเทียมเพื่อทำาการทำนายอัตราแลกเปลี่ยน (หรือตัวบ่งชี้อัตราแลกเปลี่ยน) และใช้การคาดการณ์นี้เพื่อทำาการซื้อขาย จากนั้นนอกเครือข่าย Neural Network ของโปรแกรมเราได้ตัดสินใจว่า Neural Network เป็นระบบที่ดีที่สุด อัลกอริทึมทางพันธุกรรมสามารถจัดการกับปัญหานี้ได้โดยตรงพวกเขาสามารถแก้ปัญหาตามที่ระบุไว้ได้โดยหาสัญญาณการซื้อขายที่ดีที่สุด ในบทความนี้เราจะใช้ Cortex Neural Networks Software เพื่อสร้างโปรแกรมดังกล่าว การใช้อัลกอริทึมทางพันธุกรรมขั้นตอนวิธีทางพันธุกรรมได้รับการพัฒนาเป็นอย่างดีและมีความหลากหลายมาก ถ้าคุณต้องการเรียนรู้เกี่ยวกับเรื่องนี้ขอแนะนำให้คุณใช้วิกิพีเดียเนื่องจากบทความนี้เป็นเพียงสิ่งที่ Cortex Neural Networks Software สามารถทำได้ มีซอฟต์แวร์ Cortex Neural Networks เราสามารถสร้างเครือข่ายประสาทเทียมที่ใช้ข้อมูลบางอย่างเช่นค่าของตัวบ่งชี้และสร้างผลลัพธ์บางอย่างเช่นสัญญาณการซื้อขาย (ซื้อซื้อขาย) ค้างไว้และหยุดการสูญเสียระดับผลกำไรสำหรับตำแหน่งที่จะเปิด แน่นอนว่าถ้าเราให้น้ำหนักของเครือข่ายนี้เป็นแบบสุ่มผลการซื้อขายจะแย่มาก อย่างไรก็ตามสมมติว่าเราได้สร้างโหลดังกล่าวขึ้น จากนั้นเราสามารถทดสอบประสิทธิภาพของแต่ละคนได้และเลือกสิ่งที่ดีที่สุดผู้ชนะ นี่เป็นรุ่นแรกของ NNS ในการดำเนินการต่อไปในยุคที่สองเราต้องอนุญาตให้ผู้ชนะของเราสร้าง แต่เพื่อหลีกเลี่ยงการทำสำเนาเดียวกันให้เพิ่มเสียงสุ่มบางอย่างลงในน้ำหนักที่ลดลง ในรุ่นที่สองเรามีผู้ชนะรุ่นแรกและสำเนาไม่สมบูรณ์ (mutated) ของเรา ให้ทำการทดสอบอีกครั้ง เราจะมีผู้ชนะคนอื่นซึ่งดีกว่าเครือข่ายประสาทเทียมอื่น ๆ ในรุ่นนี้ และอื่น ๆ เราเพียงแค่อนุญาตให้ผู้ชนะพันธุ์และกำจัดผู้แพ้เช่นเดียวกับวิวัฒนาการในชีวิตจริงและเราจะได้รับ Neural Network ที่ดีที่สุดของเรา ไม่มีความรู้ใด ๆ เกี่ยวกับระบบการค้า (ขั้นตอนวิธีทางพันธุกรรม) ควรเป็นเช่น อัลกอริทึมทางพันธุกรรมของเครือข่ายประสาทเทียม: ตัวอย่าง 0 นี่เป็นตัวอย่างขั้นตอนวิธีทางพันธุกรรมตัวแรก และง่ายมาก เราจะเดินผ่านมันทีละขั้นตอนเพื่อเรียนรู้เทคนิคทั้งหมดที่ตัวอย่างต่อไปนี้จะใช้ โค้ดมีความคิดเห็นแบบอินไลน์ดังนั้นให้เน้นเฉพาะช่วงเวลาสำคัญ ขั้นแรกเราได้สร้างเครือข่ายประสาทขึ้น ใช้น้ำหนักแบบสุ่มและยังไม่ได้สอน จากนั้นในวัฏจักรที่เราทำ 14 สำเนาของมันโดยใช้การรั่วไหล MUTATIONNN ฟังก์ชั่นนี้จะทำสำเนาของเครือข่าย Neural Network เพิ่มค่าสุ่มจาก 0 เป็น (ในกรณีของเรา) 0.1 สำหรับน้ำหนักทั้งหมด เราจัดการกับ NNN 15 อันที่เกิดขึ้นในอาร์เรย์เราสามารถทำมันได้เนื่องจากหมายเลขอ้างอิงเป็นจำนวนเต็มเท่านั้น เหตุผลที่เราใช้ 15 NNs ไม่มีส่วนเกี่ยวข้องกับการซื้อขาย: ซอร์ฟแวร์ Cortex Neural Networks สามารถทำกราฟได้ถึง 15 บรรทัดพร้อมกัน เราสามารถใช้วิธีการต่างๆในการทดสอบ อันดับแรกเราสามารถใช้ชุดการเรียนรู้ทั้งหมดได้ในครั้งเดียว ประการที่สองเราสามารถทดสอบในคำพูด 12000 resords (จาก 100000) และเดินผ่านชุดการเรียนรู้ตั้งแต่ต้นจนจบ ซึ่งจะทำให้ learnigs แตกต่างกันไปเนื่องจากเราจะค้นหาเครือข่าย Neural Network ที่ทำกำไรได้จากข้อมูลที่ได้รับไม่เฉพาะในชุดข้อมูลทั้งหมด วิธีที่สองสามารถทำให้เราเกิดปัญหาได้หากข้อมูลมีการเปลี่ยนแปลงตั้งแต่ต้นจนจบ เครือข่ายจะมีวิวัฒนาการได้รับความสามารถในการซื้อขายเมื่อสิ้นสุดชุดข้อมูลและสูญเสียความสามารถในการค้าขายตั้งแต่ต้น ในการแก้ปัญหานี้เราจะสุ่มเก็บบันทึก 12000 ชิ้นจากข้อมูลและป้อนข้อมูลไปยังเครือข่ายประสาทเทียม เป็นเพียงวงจรที่ไม่มีที่สิ้นสุดเนื่องจากรอบ 100000 จะไม่เกิดขึ้นที่ความเร็วของเรา ด้านล่างเราเพิ่มเด็ก 1 คนสำหรับแต่ละเครือข่ายโดยมีน้ำหนักแตกต่างกันเล็กน้อย ทราบว่า 0.1 สำหรับการกลายพันธุ์ tange ไม่ได้เป็นทางเลือกเดียวที่เป็นเรื่องของความเป็นจริงแม้พารามิเตอร์นี้สามารถเพิ่มประสิทธิภาพโดยใช้ขั้นตอนวิธีทางพันธุกรรม NNs ที่สร้างขึ้นใหม่จะถูกเพิ่มหลังจากที่มีอยู่ 15 วิธีนี้เรามี 30 NN ในอาร์เรย์ 15 เก่าและ 15 ใหม่ จากนั้นเราจะทำรอบทดสอบต่อไปและจะฆ่าผู้แพ้จากทั้งสองรุ่น เมื่อต้องการทำแบบทดสอบเราจะใช้เครือข่ายประสาทเทียมกับข้อมูลของเราเพื่อสร้างผลลัพธ์และเรียกฟังก์ชันทดสอบซึ่งใช้ข้อมูลเหล่านี้เพื่อจำลองการซื้อขาย ผลของการซื้อขายถูกนำมาใช้เพื่อตัดสินว่า NNs ใดที่ดีที่สุด เราใช้ช่วงเวลาของระเบียน nLearn จาก nStart ไปที่ nStart nLearn โดยที่ nStart เป็นจุดสุ่มภายในชุดการเรียนรู้ โค้ดด้านล่างเป็นเคล็ดลับ เหตุผลที่เราใช้ก็เพื่อแสดงให้เห็นถึงความจริงที่ว่าขั้นตอนวิธีทางพันธุกรรมสามารถสร้างขั้นตอนวิธีทางพันธุกรรม แต่ก็ไม่จำเป็นต้องเป็นคำแนะนำที่ดีที่สุดและยังแนะนำว่าเราสามารถปรับปรุงผลการดำเนินงานได้ถ้าเราอนุมานถึงข้อ จำกัด บางอย่างในกระบวนการเรียนรู้ เป็นไปได้ว่าระบบการซื้อขายของเราทำงานได้ดีในธุรกิจการค้าที่ยาวนานและไม่ค่อยดีในระยะสั้นหรือในทางกลับกัน ถ้าพูดยาวธุรกิจการค้าที่ดีมากนี้ขั้นตอนวิธีทางพันธุกรรมอาจจะชนะแม้จะมีการสูญเสียขนาดใหญ่ในธุรกิจการค้าระยะสั้น เพื่อหลีกเลี่ยงปัญหานี้เราจะกำหนดน้ำหนักให้กับธุรกิจการค้าที่ยาวนานและแปลกใหม่ในรอบที่เกิดขึ้น นี่เป็นเพียงตัวอย่างไม่มีการรับประกันใด ๆ ว่าจะปรับปรุงบางอย่าง เพิ่มเติมเกี่ยวกับด้านล่างในการอภิปรายเกี่ยวกับการแก้ไข เทคนิคคุณ dont ต้องทำหรือสามารถทำให้แตกต่างกัน เพิ่มกำไรลงในแถวที่เรียง มันจะส่งกลับตำแหน่งแทรกแล้วเราจะใช้ตำแหน่งนี้เพื่อเพิ่มเครือข่ายประสาทการจัดการการเรียนรู้และการทดสอบผลกำไรให้อาร์เรย์ที่ไม่เรียงลำดับ ตอนนี้เรามีข้อมูลสำหรับเครือข่ายประสาทเทียมในปัจจุบันที่ดัชนีอาร์เรย์เช่นเดียวกับผลกำไรของมัน ความคิดคือการมาถึงอาร์เรย์ของ NNs เรียงตามความสามารถในการทำกำไร เป็นแถวเรียงตามกำไรเพื่อลบ 12 เครือข่ายที่มีกำไรน้อยกว่าเราก็ต้องลบ NNs 0 ถึง 14 การตัดสินใจซื้อขายขึ้นอยู่กับมูลค่าของสัญญาณเครือข่ายประสาทจากมุมมองนี้โปรแกรมจะเหมือนกับตัวอย่างจาก บทความก่อนหน้า กลยุทธ์การซื้อขาย FOREX: การอภิปรายตัวอย่างที่ 0 ก่อนอื่นให้ลองดูที่แผนภูมิ แผนภูมิแรกสำหรับกำไรระหว่างการทำซ้ำครั้งแรกไม่ดีเท่าที่ควร แต่เครือข่ายประสาทจะสูญเสียเงิน (ภาพ evolution00gen0.png ถูกคัดลอกหลังจากทำซ้ำครั้งแรกจากโฟลเดอร์ภาพ): ภาพสำหรับกำไรในรอบ 15 ดีกว่าบางครั้ง อัลกอริทึมทางพันธุกรรมสามารถเรียนรู้ได้อย่างรวดเร็ว: อย่างไรก็ตามสังเกตความอิ่มตัวบนเส้นโค้งกำไร เป็นที่น่าสนใจนอกจากนี้ยังมองไปที่วิธีการที่ผลกำไรของแต่ละคนมีการเปลี่ยนแปลงการเก็บไว้ในใจจำนวนโค้งที่พูด 3 ไม่ได้เสมอสำหรับเครือข่ายประสาทเทียมเดียวกัน ขณะที่พวกเขากำลังเกิดและถูกยกเลิกตลอดเวลา: นอกจากนี้โปรดสังเกตว่าระบบการซื้อขายแบบอัตโนมัติของ forex แบบเล็ก ๆ มีประสิทธิภาพต่ำในการค้าระยะสั้นและดีกว่าใน longs ซึ่งอาจหรือไม่เกี่ยวข้องกับข้อเท็จจริงที่ว่าเงินดอลลาร์ลดลงเมื่อเทียบกับ ยูโรในช่วงเวลาดังกล่าว นอกจากนี้ยังอาจมีบางสิ่งที่เกี่ยวข้องกับพารามิเตอร์ของตัวบ่งชี้ของเรา (บางทีเราต้องมีระยะเวลาที่แตกต่างกันสำหรับกางเกงขาสั้น) หรือตัวชี้วัดที่เลือก นี่คือประวัติหลังจากรอบ 92 และ 248: แปลกใจของเราขั้นตอนวิธีทางพันธุกรรมล้มเหลวอย่างสมบูรณ์ ช่วยให้เราลองหาสาเหตุและวิธีช่วยสถานการณ์ ประการแรกไม่ใช่แต่ละรุ่นควรจะดีกว่า previuos หนึ่งคำตอบคือไม่อย่างน้อยไม่อยู่ในรูปแบบที่เราใช้ ถ้าเราเอาชุดการเรียนรู้ทั้งหมดมาพร้อมกันและใช้ซ้ำเพื่อสอน NNs ของเราแล้วก็จะดีขึ้นในแต่ละรุ่น แต่เราได้สุ่มตัวอย่างเอาไว้ (12000 ระเบียนในเวลา) และใช้ข้อมูลเหล่านี้ คำถามสองข้อ: เหตุใดระบบจึงล้มเหลวในการสุ่มตัวอย่างชุดการเรียนรู้และทำไมเราถึงใช้ชุดการเรียนรู้ทั้งชุด? เพื่อตอบคำถามที่สองฉันไม่ NNs ทำอย่างมาก - เกี่ยวกับชุดการเรียนรู้ และพวกเขาล้มเหลวในการตั้งค่าการทดสอบด้วยเหตุผลเดียวกันกับความล้มเหลวเมื่อเราใช้การเรียนรู้ของ FFPB เพื่อให้แตกต่างกัน NNs ของเราได้รับการดูแลที่เกินจริงพวกเขาได้เรียนรู้วิธีที่จะอยู่รอดในสภาพแวดล้อมที่พวกเขาเคยชิน แต่ไม่ใช่อยู่ข้างนอก สิ่งนี้เกิดขึ้นในธรรมชาติ วิธีการที่เราเอามาแทนมีจุดมุ่งหมายเพื่อชดเชยให้โดยบังคับให้ NN ดำเนินการได้ดีในส่วนที่สุ่มใด ๆ ของชุดข้อมูลดังนั้นหวังว่าพวกเขาก็สามารถดำเนินการกับชุดทดสอบที่ไม่คุ้นเคย แต่ล้มเหลวทั้งในการทดสอบและในชุดการเรียนรู้ ลองจินตนาการถึงสัตว์ที่อาศัยอยู่ในทะเลทราย ดวงอาทิตย์มากไม่มีหิมะเลย นี่เป็น metafor สำหรับการขยายตลาดเนื่องจากข้อมูล NN ของเรามีบทบาทต่อสิ่งแวดล้อม สัตว์ได้เรียนรู้ที่จะอยู่ในทะเลทราย ลองจินตนาการถึงสัตว์ที่อาศัยอยู่ในสภาพอากาศหนาวเย็น หิมะและไม่มีแดดเลย ดีพวกเขาปรับ อย่างไรก็ตามในการทดสอบของเราเราสุ่มวาง NN ของเราในทะเลทรายในหิมะในน้ำบนต้นไม้ โดยการนำเสนอข้อมูลที่แตกต่างกัน (สุ่มเพิ่มขึ้น, ลดลง, แบน) สัตว์ตาย หรือแตกต่างไปจากนี้เราเลือกเครือข่ายประสาทเทียมที่ดีที่สุดสำหรับชุดข้อมูลแบบสุ่ม 1 ซึ่งกล่าวว่าเป็นตลาดที่เพิ่มขึ้น จากนั้นเราก็นำเสนอข้อมูลผู้โชคดีและลูกหลานของพวกเขา NN ดำเนินการได้ไม่ดีนักเราเอานักแสดงที่เก่งที่สุดคนหนึ่งซึ่งอาจเป็นเด็กคนหนึ่งซึ่งกลายพันธุ์ซึ่งสูญเสียความสามารถในการค้าขายในตลาดที่สูงขึ้น แต่ก็มีความสามารถในการรับมือกับการล้มลงได้ จากนั้นเรากลับมาที่โต๊ะอีกครั้งและเราก็ได้นักแสดงที่ดีที่สุด - แต่ที่ดีที่สุดในหมู่นักแสดงที่ไม่ดี เราไม่ได้ให้โอกาสที่จะกลายเป็นสากลของเราได้ มีเทคนิคที่ช่วยให้อัลกอริธึมทางพันธุกรรมสามารถเรียนรู้ข้อมูลใหม่ ๆ ได้โดยไม่สูญเสียสมรรถนะของข้อมูลเก่า (หลังจากสัตว์ทุกตัวสามารถอยู่ในช่วงหน้าร้อนและฤดูหนาวได้ดังนั้นวิวัฒนาการก็สามารถจัดการกับการเปลี่ยนแปลงซ้ำ ๆ ) เราอาจพูดถึงเทคนิคเหล่านี้ในภายหลังแม้ว่าบทความนี้จะเกี่ยวกับการใช้ Cortex Neural Networks Software มากกว่าเกี่ยวกับการสร้างระบบการซื้อขายอัตโนมัติแบบอัตโนมัติที่ประสบความสำเร็จ อัลกอริทึมทางพันธุกรรมของเครือข่ายประสาทเทียม: ตัวอย่างที่ 1 ตอนนี้ถึงเวลาแล้วที่จะพูดถึงการแก้ไข อัลกอริทึมทางพันธุกรรมที่เราสร้างขึ้นในขั้นตอนก่อนหน้านี้มีสองข้อบกพร่องที่สำคัญ อันดับแรกมันล้มเหลวในการค้ากับกำไร ไม่เป็นไรเราสามารถลองใช้ระบบที่ได้รับการฝึกฝนมาบ้างแล้ว (เป็นเรื่องที่ทำกำไรได้ตั้งแต่เริ่มต้น) ข้อบกพร่องที่สองเป็นเรื่องที่รุนแรงมากขึ้น: เราไม่มีทางควบคุมสิ่งต่างๆที่ระบบนี้ทำ ตัวอย่างเช่นอาจเรียนรู้ที่จะทำกำไรได้ แต่ต้องเสียเงินมาก เป็นความจริงที่รู้จักกันดีว่าในชีวิตจริงวิวัฒนาการสามารถเพิ่มพารามิเตอร์ได้มากกว่าหนึ่งพารามิเตอร์พร้อมกัน ตัวอย่างเช่นเราสามารถหาสัตว์ที่สามารถวิ่งได้เร็วและทนทานต่อความหนาวเย็น ทำไมไม่ลองทำเช่นเดียวกันในระบบการซื้อขายอัตโนมัติของเรา forex นั่นคือเมื่อเราใช้การแก้ไขซึ่งเป็นอะไร แต่ชุดของการลงโทษเพิ่มเติม สมมติว่าระบบของเราทำงานกับการเบิก 0.5 ในขณะที่เราต้องการยืนยันให้เป็น 0 ถึง 0.3 ช่วงเวลา เพื่อบอกระบบว่าผิดพลาดเราจะลดกำไร (หนึ่งที่ใช้ในการกำหนดซึ่งขั้นตอนวิธีทางพันธุกรรมได้รับรางวัล) ในระดับที่เป็นสัดส่วนกับขนาดของ DD จากนั้นขั้นตอนการวิวัฒนาการจะดูแลส่วนที่เหลือ มีปัจจัยอื่น ๆ อีกเล็กน้อยที่เราต้องการพิจารณา: เราอาจต้องการมีการดำเนินการซื้อและขายที่เท่ากันหรือน้อยกว่านี้เราต้องการมีผลการดำเนินงานที่ทำกำไรได้มากขึ้นและจากความล้มเหลวเราอาจต้องการทำแผนภูมิกำไร เป็นเส้นตรงและอื่น ๆ ใน evolution01.tsc เราใช้ชุดการแก้ไขที่เรียบง่าย ก่อนอื่นเราใช้ตัวเลขจำนวนมากสำหรับค่าการแก้ไขเริ่มต้น เราคูณค่าให้เล็กลง (ปกติระหว่าง 0 ถึง 1) ขึ้นอยู่กับการลงโทษที่เราต้องการใช้ จากนั้นเราจะเพิ่มผลกำไรให้กับการแก้ไขนี้ ดังนั้นผลกำไรจึงได้รับการแก้ไขเพื่อให้สอดคล้องกับเกณฑ์อื่น ๆ ของเรา จากนั้นเราจะใช้ผลการค้นหาผู้ชนะเครือข่ายประสาทเทียม กลยุทธ์การซื้อขาย FOREX: การอภิปรายตัวอย่าง 1 ตัวอย่างที่ 1 ทำงานได้ดีกว่าตัวอย่างที่ 0 ในช่วง 100 รอบแรกได้เรียนรู้เป็นอย่างมากและแผนภูมิกำไรดูมั่นใจ อย่างไรก็ตามเช่นเดียวกับในตัวอย่างที่ 0 ธุรกิจการค้าระยะยาวทำกำไรได้มากขึ้นซึ่งอาจหมายความว่ามีปัญหาในแนวทางของเรา อย่างไรก็ตามระบบพบความสมดุลระหว่างสองเงื่อนไขที่ขัดแย้งกัน: มีพลวัตในเชิงบวกบางอย่างทั้งในชุดการเรียนรู้และที่สำคัญกว่าในชุดทดสอบ สำหรับการเรียนรู้เพิ่มเติมในวัฏจักรที่ 278 เราจะเห็นได้ว่าระบบของเราได้รับการฝึกฝนมาเป็นอย่างดี ก็หมายความว่าเรายังคงมีความคืบหน้าในการเรียนรู้ชุด: แต่ชุดทดสอบแสดงจุดอ่อน: นี่เป็นปัญหาที่พบบ่อยเกี่ยวกับ NNS: เมื่อเราสอนในชุดการเรียนรู้จะเรียนรู้ที่จะจัดการกับมันและบางครั้งก็เรียนรู้ได้ดี - เพื่อ ปริญญาเมื่อสูญเสียประสิทธิภาพในชุดทดสอบ เพื่อแก้ปัญหาดังกล่าวเราใช้โซลูชันแบบดั้งเดิม: เรายังคงมองหาเครือข่ายประสาทเทียม ที่ทำงานได้ดีที่สุดในชุดทดสอบและบันทึกไว้เขียนทับดีที่สุดก่อนหน้านี้ทุกครั้งที่ถึงจุดสูงสุดใหม่ นี่เป็นวิธีเดียวกับที่เราใช้ในการฝึกอบรม FFBP ยกเว้นเวลานี้เราต้องทำเอง (เพิ่มโค้ดที่ค้นหาเครือข่ายประสาทเทียมที่ดีที่สุดในชุดทดสอบและเรียก SAVENN หรือส่งออกน้ำหนักของเครือข่ายประสาทไปยัง ไฟล์). ด้วยวิธีนี้เมื่อคุณหยุดการฝึกอบรมคุณจะมีนักแสดงที่ดีที่สุดใน TESTING SET ที่บันทึกไว้และรอคุณอยู่ โปรดทราบด้วยว่าไม่ใช่แม็กซ์ กำไรที่คุณได้รับหลัง แต่ประสิทธิภาพที่ดีที่สุดดังนั้นให้ลองใช้การแก้ไขเมื่อมองหานักแสดงที่ดีที่สุดในชุดทดสอบ ขั้นตอนวิธีทางพันธุกรรมสำหรับการวิเคราะห์ทางเทคนิคของ FOREX: ตอนนี้หลังจากที่คุณได้รับรางวัล Neural Network แล้ว คุณสามารถทำตามขั้นตอนที่อธิบายไว้ในบทความก่อนหน้าเพื่อส่งออกน้ำหนักของเครือข่ายประสาทเทียมนั้น แล้วนำไปใช้ในแพลตฟอร์มการซื้อขายแบบเรียลไทม์เช่น Meta Trader, Trade Station เป็นต้น หรือคุณสามารถมุ่งเน้นไปที่วิธีอื่น ๆ ในการเพิ่มประสิทธิภาพเครือข่ายประสาทเทียม ไม่เหมือนอัลกอริทึม FFBP ที่นี่คุณจะได้รับ avay จากการใช้ชุดการเรียนรู้และการทดสอบและย้ายการเรียนรู้ตามลำดับ ดาวน์โหลด Cortex Order Cortex ดูราคาการมองเห็นรายการเป็นสิ่งที่สำคัญมากสำหรับเว็บไซต์นี้ หากต้องการโปรดเชื่อมโยงไปยัง URL นี้
Forex- yorum   ฟอรั่ม
น่ากลัว-forex- ซื้อขาย - กลยุทธ์ - (never-lose-again) pdf