EWMA - ชี้แจง ถ่วงน้ำหนัก เคลื่อนที่ เฉลี่ย สูตร

EWMA - ชี้แจง ถ่วงน้ำหนัก เคลื่อนที่ เฉลี่ย สูตร

Hot -forex- ร้อย บัญชี
ทอง อัตราแลกเปลี่ยน ซื้อขาย ชั่วโมง
Forex- SGD - CNY


Forex- Oy - valuutanvaihto Forex- da - sie - zarobic Forex- ผลิตภัณฑ์ และ บริการ ฟิวเจอร์ส และ ตัวเลือก -trading- วิดีโอ กวดวิชา Forex- fibonacci ซื้อขาย Forex- siembah

วิธีการ EWMA มีคุณลักษณะที่น่าสนใจอย่างหนึ่ง: ต้องใช้ข้อมูลที่เก็บไว้ค่อนข้างน้อย หากต้องการอัปเดตค่าประมาณของเราในเวลาใด ๆ เราจะต้องประมาณค่าความแปรปรวนก่อนหน้าและค่าสังเกตล่าสุดเท่านั้น วัตถุประสงค์รองของ EWMA คือการติดตามการเปลี่ยนแปลงความผันผวน สำหรับค่าน้อยค่าสังเกตการณ์ล่าสุดจะมีผลต่อการประมาณการโดยทันที สำหรับค่าที่ใกล้เคียงกับค่าประมาณหนึ่งค่าประมาณจะเปลี่ยนแปลงช้าๆตามการเปลี่ยนแปลงล่าสุดของผลตอบแทนของตัวแปรต้นแบบ ฐานข้อมูล RiskMetrics (ผลิตโดย JP Morgan และเผยแพร่ต่อสาธารณะ) ใช้ EWMA เพื่อปรับปรุงความผันผวนทุกวัน สำคัญ: สูตร EWMA ไม่ถือว่าเป็นระดับความแปรปรวนเฉลี่ยระยะยาว ดังนั้นแนวคิดเรื่องความผันผวนของค่าความผันผวนไม่ได้มาจาก EWMA โมเดล ARCHGARCH เหมาะสำหรับวัตถุประสงค์นี้ วัตถุประสงค์รองของ EWMA คือการติดตามการเปลี่ยนแปลงความผันผวนดังนั้นค่าเล็กน้อยการสังเกตล่าสุดจึงมีผลต่อการประมาณการณ์โดยทันทีและสำหรับค่าที่ใกล้เคียงกับค่าประมาณหนึ่งค่าประมาณจะเปลี่ยนแปลงไปอย่างช้าๆต่อการเปลี่ยนแปลงล่าสุดในการส่งกลับค่าของตัวแปรต้นแบบ ฐานข้อมูล RiskMetrics (ผลิตโดย JP Morgan) และเผยแพร่ต่อสาธารณะในปี 2537 ใช้แบบจำลอง EWMA พร้อมสำหรับการอัปเดตการประมาณความผันผวนทุกวัน บริษัท พบว่าในช่วงของตัวแปรตลาดค่านี้จะให้ค่าพยากรณ์ความแปรปรวนที่ใกล้เคียงกับอัตราความแปรปรวนที่แท้จริง อัตราความแปรปรวนที่เกิดขึ้นในแต่ละวันจะคำนวณเป็นค่าเฉลี่ยถ่วงน้ำหนักเท่ากันในอีก 25 วัน ในทำนองเดียวกันเพื่อคำนวณค่าที่ดีที่สุดของ lambda สำหรับชุดข้อมูลของเราเราจำเป็นต้องคำนวณความผันผวนที่เกิดขึ้น ณ แต่ละจุด มีหลายวิธีให้เลือก จากนั้นคำนวณผลรวมของข้อผิดพลาด (SSE) ระหว่างประมาณการ EWMA กับความผันผวนที่เกิดขึ้นจริง สุดท้ายลด SSE โดยเปลี่ยนค่า lambda ฟังดูง่าย ความท้าทายที่ใหญ่ที่สุดคือการยอมรับวิธีการคำนวณความผันผวนที่เกิดขึ้น ตัวอย่างเช่นคนที่ RiskMetrics เลือก 25 วันหลังจากนั้นเพื่อคำนวณอัตราความแปรปรวนที่ได้รับ ในกรณีของคุณคุณอาจเลือกอัลกอริทึมที่ใช้ปริมาณรายวัน HILO และหรือ OPEN-CLOSE ราคา Q: เราสามารถใช้ EWMA ในการประเมินความผันผวนของความแปรปรวน (หรือคาดการณ์) ได้มากกว่าหนึ่งขั้นตอนการแสดงความผันผวนของ EWMA ไม่ถือว่าเป็นความผันผวนเฉลี่ยในระยะยาวและด้วยเหตุนี้สำหรับขอบฟ้าที่คาดการณ์ไว้มากกว่าหนึ่งขั้นตอน EWMA จะส่งกลับค่าคงที่ value: การสำรวจความผันผวนโดยเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเชิงตัวเลขเป็นการวัดความเสี่ยงที่พบมากที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) ซึ่งจะให้ผลตอบแทนเป็นรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่ได้รับล่าสุดมีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Google มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตดังนั้นคุณจึงสามารถทดสอบความไวได้) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลมากขึ้น แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด วิธีการคำนวณค่าเฉลี่ยถ่วงน้ำหนักใน Excel โดยใช้การคำนวณข้อมูล Excel อย่างราบเรียบสำหรับ Dummies, Edition ครั้งที่ 2 เครื่องมือ Exponential Smoothing ใน Excel คำนวณค่าเฉลี่ยเคลื่อนที่ อย่างไรก็ตามการคำนวณความถ่วงน้ำหนักแบบเลขยกกำลังให้ค่าที่รวมอยู่ในการคำนวณค่าเฉลี่ยเคลื่อนที่เพื่อให้ค่าล่าสุดมีผลมากขึ้นกับการคำนวณโดยเฉลี่ยและค่าเดิมมีผลน้อยกว่า การถ่วงน้ำหนักนี้ทำได้ผ่านค่าคงที่ที่ราบเรียบ เพื่อแสดงให้เห็นว่าเครื่องมือ Smoothing แบบ Exponential ทำงานอย่างไรสมมติว่า you8217re อีกครั้งกำลังมองหาข้อมูลอุณหภูมิเฉลี่ยรายวัน ในการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยใช้การคำนวณหากำไรให้เรียบโปรดทำตามขั้นตอนต่อไปนี้: เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ได้รับการทำความสะอาดอย่างต่อเนื่องให้คลิกที่ปุ่มคำสั่ง Data data analysis ของข้อมูล tab8217s เมื่อ Excel แสดงไดอะล็อกบ็อกซ์การวิเคราะห์ข้อมูลเลือกรายการ Smoning แบบ Exponential จากรายการจากนั้นคลิก OK Excel จะแสดงไดอะล็อกบ็อกซ์ Exponential Smoothing ระบุข้อมูล หากต้องการระบุข้อมูลที่คุณต้องการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนไหวที่ชี้แจงให้คลิกที่กล่องข้อความ Input Range จากนั้นระบุช่วงการป้อนข้อมูลโดยพิมพ์ที่อยู่ช่วงเวิร์กชีทหรือเลือกช่วงของแผ่นงาน หากช่วงอินพุทของคุณมีป้ายข้อความเพื่อระบุหรืออธิบายข้อมูลของคุณให้เลือกช่องทำเครื่องหมายป้ายข้อความ ให้ค่าคงที่ที่ราบเรียบ ป้อนค่าคงที่ที่ราบเรียบในกล่องข้อความ Damping Factor แฟ้มวิธีใช้ Excel แสดงว่าคุณใช้ค่าคงที่ที่ราบเรียบระหว่าง 0.2 และ 0.3 สันนิษฐานได้ว่าอย่างไรก็ตามหาก you8217 ใช้เครื่องมือนี้คุณมีความคิดของคุณเองเกี่ยวกับค่าคงที่ของการทำให้เรียบที่ถูกต้องคือ (หากคุณไม่เข้าใจเกี่ยวกับค่าคงที่ที่ราบเรียบบางทีคุณอาจไม่ควรใช้เครื่องมือนี้) บอก Excel ว่าจะใส่ข้อมูลค่าเฉลี่ยเคลื่อนที่แบบเรียบ ใช้กรอบข้อความ Output Range เพื่อระบุช่วงเวิร์กชีตที่คุณต้องการวางข้อมูลค่าเฉลี่ยเคลื่อนที่ ตัวอย่างเช่นในตัวอย่างแผ่นงานคุณวางข้อมูลค่าเฉลี่ยเคลื่อนที่ลงในช่วงเวิร์กชีท B2: B10 (ไม่บังคับ) แสดงข้อมูลที่เรียบขึ้น เมื่อต้องการแผนภูมิข้อมูลที่ได้รับการจัดเรียงอย่างรวดเร็วให้เลือกช่องทำเครื่องหมายแผนภูมิเอาท์พุท (ไม่บังคับ) ระบุว่าคุณต้องการคำนวณข้อมูลข้อผิดพลาดมาตรฐาน หากต้องการคำนวณข้อผิดพลาดมาตรฐานให้เลือกช่องทำเครื่องหมายข้อผิดพลาดมาตรฐาน Excel วางค่าความผิดพลาดมาตรฐานไว้ข้างๆค่าเฉลี่ยเคลื่อนที่แบบเรียบ หลังจากที่คุณระบุว่าต้องการย้ายข้อมูลเฉลี่ยที่ต้องการและตำแหน่งที่ต้องการวางไว้คลิกตกลง Excel คำนวณข้อมูลค่าเฉลี่ยเคลื่อนที่
Forex- MRC
Citi   หุ้น ตัวเลือก