ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ เรียบ คงที่

ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ เรียบ คงที่

ชี้แจง เคลื่อนไหว ค่าเฉลี่ย กลาง ของ มวล
Gruppo -11- อัตราแลกเปลี่ยน
17   การพิสูจน์ สกุลเงิน -trading- กลยุทธ์   ebook


Forexpros - Ekonomik - Takvim Forex- สถาน Ltd อิสราเอล All- ตัวเลือก กลยุทธ์ Fx- ตัวเลือก pips Forex- การพนัน ระบบ ฟรี -forex- สก์ท็อป นาฬิกา

วิธีการคำนวณค่าเฉลี่ยถ่วงน้ำหนักใน Excel ที่ใช้การคำนวณข้อมูล Excel อย่างราบรื่นสำหรับ Dummies, Edition ครั้งที่ 2 เครื่องมือ Exponential Smoothing ใน Excel คำนวณค่าเฉลี่ยเคลื่อนที่ อย่างไรก็ตามการคำนวณความถ่วงน้ำหนักแบบเลขยกกำลังให้ค่าที่รวมอยู่ในการคำนวณค่าเฉลี่ยเคลื่อนที่เพื่อให้ค่าล่าสุดมีผลมากขึ้นกับการคำนวณโดยเฉลี่ยและค่าเดิมมีผลน้อยกว่า การถ่วงน้ำหนักนี้ทำได้ผ่านค่าคงที่ที่ราบเรียบ เพื่อแสดงให้เห็นว่าเครื่องมือ Smoothing แบบ Exponential ทำงานอย่างไรสมมติว่า you8217re อีกครั้งกำลังมองหาข้อมูลอุณหภูมิเฉลี่ยรายวัน ในการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยใช้การคำนวณหากำไรให้เรียบโปรดทำตามขั้นตอนต่อไปนี้: เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ได้รับการทำความสะอาดอย่างละเอียดให้คลิกที่ปุ่มคำสั่ง Data data analysis ของข้อมูล tab8217s เมื่อ Excel แสดงไดอะล็อกบ็อกซ์การวิเคราะห์ข้อมูลเลือกรายการ Smoning แบบ Exponential จากรายการจากนั้นคลิก OK Excel จะแสดงไดอะล็อกบ็อกซ์ Exponential Smoothing ระบุข้อมูล หากต้องการระบุข้อมูลที่คุณต้องการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนไหวที่ชี้แจงให้คลิกที่กล่องข้อความ Input Range จากนั้นระบุช่วงการป้อนข้อมูลโดยพิมพ์ที่อยู่ช่วงเวิร์กชีทหรือเลือกช่วงของแผ่นงาน หากช่วงอินพุทของคุณมีป้ายข้อความเพื่อระบุหรืออธิบายข้อมูลของคุณให้เลือกช่องทำเครื่องหมายป้ายข้อความ ให้ค่าคงที่ที่ราบเรียบ ป้อนค่าคงที่ที่ราบเรียบในกล่องข้อความ Damping Factor แฟ้มวิธีใช้ Excel แสดงว่าคุณใช้ค่าคงที่ที่ราบเรียบระหว่าง 0.2 และ 0.3 สันนิษฐานได้ว่าอย่างไรก็ตามหาก you8217 ใช้เครื่องมือนี้คุณมีความคิดของคุณเองเกี่ยวกับค่าคงที่ของการทำให้เรียบที่ถูกต้องคือ (หากคุณไม่เข้าใจเกี่ยวกับค่าคงที่ที่ราบเรียบบางทีคุณอาจไม่ควรใช้เครื่องมือนี้) บอก Excel ว่าจะใส่ข้อมูลค่าเฉลี่ยเคลื่อนที่แบบเรียบ ใช้กรอบข้อความ Output Range เพื่อระบุช่วงเวิร์กชีตที่คุณต้องการวางข้อมูลค่าเฉลี่ยเคลื่อนที่ ตัวอย่างเช่นในตัวอย่างแผ่นงานคุณวางข้อมูลค่าเฉลี่ยเคลื่อนที่ลงในช่วงเวิร์กชีท B2: B10 (ไม่บังคับ) แสดงข้อมูลที่เรียบขึ้น เมื่อต้องการแผนภูมิข้อมูลที่ได้รับการจัดเรียงอย่างรวดเร็วให้เลือกช่องทำเครื่องหมายแผนภูมิเอาท์พุท (ไม่บังคับ) ระบุว่าคุณต้องการคำนวณข้อมูลข้อผิดพลาดมาตรฐาน หากต้องการคำนวณข้อผิดพลาดมาตรฐานให้เลือกช่องทำเครื่องหมายข้อผิดพลาดมาตรฐาน Excel วางค่าความผิดพลาดมาตรฐานไว้ข้างๆค่าเฉลี่ยเคลื่อนที่แบบเรียบ หลังจากที่คุณระบุว่าต้องการย้ายข้อมูลเฉลี่ยที่ต้องการและตำแหน่งที่ต้องการวางไว้คลิกตกลง Excel คำนวณข้อมูลเฉลี่ยที่เคลื่อนที่ FilterExponential หน้านี้อธิบายการกรองแบบ exponential ซึ่งเป็นตัวกรองที่ง่ายและเป็นที่นิยมมากที่สุด นี่เป็นส่วนหนึ่งของส่วนการกรองซึ่งเป็นส่วนหนึ่งของคู่มือการตรวจหาและวินิจฉัยข้อบกพร่องข้อมูลภาพรวมค่าคงที่ตลอดเวลาและหน่วยความจำแบบอนาล็อกตัวกรองที่ง่ายที่สุดคือตัวกรองเลขลำดับ มีพารามิเตอร์จูนเดียว (นอกเหนือจากช่วงเวลาตัวอย่าง) ต้องเก็บข้อมูลตัวแปรเดียว - เอาต์พุตก่อนหน้านี้ เป็นตัวกรอง IIR (autoregressive) - ผลกระทบของการเปลี่ยนแปลงการเปลี่ยนแปลงการป้อนข้อมูลแบบทวีคูณจนถึงขีด จำกัด ของการแสดงผลหรือการคำนวณทางคณิตศาสตร์ของคอมพิวเตอร์ซ่อนไว้ ในสาขาต่างๆการใช้ตัวกรองนี้เรียกว่า 8220exponential smoothing8221 ในบางสาขาวิชาเช่นการวิเคราะห์การลงทุนตัวกรองเลขยกกำลังเรียกว่า 8220Exeptably Weighted Moving Average8221 (EWMA) หรือเพียง 8220Expending Moving Average8221 (EMA) เท่านั้น การดำเนินการนี้ละเมิดหลักเกณฑ์ ARMA 8220 โดยทั่วไปในการวิเคราะห์การวิเคราะห์อนุกรมเวลาเนื่องจากไม่มีประวัติการเข้าที่ใช้งานเพียงแค่ข้อมูลปัจจุบันเท่านั้น มันเป็นเวลาที่ไม่ต่อเนื่องเทียบเท่า 8220 ลำดับแรก lag8221 ใช้กันทั่วไปในการสร้างแบบจำลองอนาล็อกของระบบควบคุมเวลาต่อเนื่อง ในวงจรไฟฟ้าตัวกรอง RC (ตัวกรองที่มีตัวเก็บประจุหนึ่งตัวและตัวเก็บประจุหนึ่งตัว) เป็นลัดแรก เมื่อเน้นความคล้ายคลึงกับวงจรแอนะล็อกพารามิเตอร์การปรับค่าเดียวคือค่าคงที่ 8220 ตลอดเวลาโดยปกติจะเขียนเป็นตัวพิมพ์เล็กตัวอักษรกรีก Tau () ในความเป็นจริงค่าในช่วงเวลาตัวอย่างที่ไม่ต่อเนื่องตรงกับเวลาลัดเวลาต่อเนื่องที่เท่ากันโดยมีค่าคงที่ในเวลาเดียวกัน ความสัมพันธระหวางการใชงานแบบดิจิตอลกับคาคงที่ของเวลาจะแสดงไวในสมการตอไปนี้ สมการและค่าเริ่มต้นของตัวกรองแบบเรียงซ้อนตัวกรองแบบ exponential เป็นชุดค่าผสมของการประมาณค่าก่อนหน้า (เอาท์พุท) ที่มีข้อมูลป้อนเข้าใหม่ล่าสุดโดยมีผลรวมของน้ำหนักเท่ากับ 1 เพื่อให้เอาท์พุทตรงกับอินพุทในสภาวะคงตัว ตามสัญกรณ์ตัวกรอง: y (k) ay (k-1) (1-a) x (k) โดยที่ x (k) เป็นข้อมูลดิบที่ระยะเวลา ky (k) เป็นผลลัพธ์ที่ผ่านการกรองในขั้นตอนเวลา ka เป็นค่าคงที่ระหว่าง 0 ถึง 1 โดยปกติระหว่าง 0.8 ถึง 0.99 (a-1) หรือบางครั้งเรียกว่า 8220smoothing constant8221 สำหรับระบบที่มีขั้นตอนเวลาคงที่ T ระหว่างตัวอย่างค่าคงที่ 8220a8221 จะคำนวณและจัดเก็บไว้เพื่อความสะดวกเฉพาะเมื่อนักพัฒนาแอ็พพลิเคชันระบุค่าใหม่ของค่าคงที่เวลาที่ต้องการ สำหรับระบบที่มีการสุ่มตัวอย่างข้อมูลในช่วงเวลาที่ผิดปกติต้องใช้ฟังก์ชันเลขชี้กำลังข้างต้นกับแต่ละขั้นตอนเวลาโดยที่ T คือเวลาตั้งแต่ตัวอย่างก่อนหน้านี้ เอาท์พุทตัวกรองมักจะถูกเตรียมใช้งานเพื่อให้ตรงกับการป้อนข้อมูลครั้งแรก เมื่อเวลาคงที่เข้าใกล้ 0 เป็น a ไปเป็นศูนย์ดังนั้นจึงไม่มีการกรองผลลัพธ์ 8211 เท่ากับการป้อนข้อมูลใหม่ เป็นเวลาคงที่จะมีขนาดใหญ่มากวิธีที่ 1 เพื่อให้ใส่ใหม่เกือบจะละเลย 8211 มากกรองหนัก สมการของตัวกรองด้านบนสามารถจัดเรียงใหม่ในรูปแบบเทียบเท่าตัวทำนาย - ตัวแก้ปัญหาต่อไปนี้: รูปแบบนี้ทำให้เห็นได้ชัดว่าค่าประมาณตัวแปร (เอาท์พุทของตัวกรอง) คาดว่าจะไม่เปลี่ยนแปลงจากค่าประมาณก่อนหน้า y (k-1) บวกคำที่ใช้แก้ไข ที่ไม่คาดคิด 8220innovation8221 - ความแตกต่างระหว่างการป้อนข้อมูลใหม่ x (k) และการทำนาย y (k-1) แบบฟอร์มนี้เป็นผลมาจากการหาตัวกรองแบบ exponential เป็นกรณีพิเศษแบบพิเศษของตัวกรองคาลมาน ซึ่งเปนทางออกที่ดีที่สุดในการประมาณคาโดยใชสมมติฐานเฉพาะ การตอบสนองขั้นตอนวิธีหนึ่งในการมองเห็นการทำงานของตัวกรองเลขยกกำลังคือการพล็อตการตอบสนองของมันในช่วงเวลาหนึ่งไปยังอินพุตขั้นตอน นั่นคือเริ่มต้นด้วยการป้อนข้อมูลตัวกรองและเอาท์พุทที่ 0 ค่าอินพุตจะเปลี่ยนไปเป็น 1 โดยอัตโนมัติค่าที่ได้จะถูกวางแผนไว้ด้านล่าง: ในพล็อตด้านบนเวลาจะถูกหารด้วยเวลาตัวกรอง tau คงที่เพื่อให้คุณคาดการณ์ได้ง่ายขึ้น ผลลัพธ์สำหรับช่วงเวลาใด ๆ สำหรับค่าใด ๆ ของค่าคงที่ของตัวกรอง หลังจากเวลาเท่ากับเวลาที่กำหนดเอาต์พุตตัวกรองจะเพิ่มขึ้นเป็น 63.21 ของค่าสุดท้าย หลังจากเวลามีค่าเท่ากับ 2 ค่าคงที่ค่าจะเพิ่มขึ้นเป็น 86.47 ของค่าสุดท้าย ผลลัพธ์ตามเวลาที่เท่ากับ 3,4 และ 5 ค่าคงที่คือ 95.02, 98.17 และ 99.33 ของค่าสุดท้ายตามลำดับ เนื่องจากตัวกรองเป็นแบบเส้นตรงนั่นหมายความว่าเปอร์เซ็นต์เหล่านี้สามารถใช้สำหรับขนาดของการเปลี่ยนแปลงขั้นตอนไม่ใช่เฉพาะสำหรับค่าที่ใช้ 1 ที่นี่ แม้ว่าการตอบสนองขั้นตอนในทฤษฎีจะใช้เวลาที่ไม่มีที่สิ้นสุดจากมุมมองเชิงปฏิบัติให้คิดเกี่ยวกับตัวกรองเลขยกกำลังเป็น 98 ถึง 99 8220done8221 ที่ตอบสนองหลังจากเวลานั้นเท่ากับ 4 ถึง 5 ช่วงเวลาของตัวกรอง มีการเปลี่ยนแปลงของตัวกรองเลขทศนิยมที่เรียกว่าตัวกรองเลข 8220nnonear อย่างละเอียด 8221 Weber, 1980 มีจุดมุ่งหมายเพื่อกรองสัญญาณรบกวนภายในคลื่น 8220typical8221 อย่างมาก แต่จะตอบสนองต่อการเปลี่ยนแปลงที่มีขนาดใหญ่กว่า Copyright 2010 - 2013, Greg Stanley แบ่งปันหน้านี้: การสำรวจความถ่วงน้ำหนักโดยเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเป็นส่วนใหญ่เป็นการวัดความเสี่ยงที่พบบ่อยที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่ได้รับเมื่อเร็ว ๆ นี้มีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Google มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตเพื่อให้คุณสามารถทดลองกับความไว) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลเพิ่มเติม แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะถูกเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (หากต้องการดูบทแนะนำเกี่ยวกับภาพยนตร์เกี่ยวกับหัวข้อนี้ไปที่ Bionic Turtle) วัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการโดยเฉพาะอย่างยิ่งกับการเปลี่ยนแปลงราคาของผลิตภัณฑ์ ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณโดยการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ คำสั่งหยุดการสั่งซื้อจะ รอบการจัดหาเงินทุนที่นักลงทุนซื้อหุ้นจาก บริษัท ในราคาที่ต่ำกว่าการประเมินมูลค่าวางไว้ ทฤษฎีเศรษฐศาสตร์ของการใช้จ่ายทั้งหมดในระบบเศรษฐกิจและผลกระทบต่อผลผลิตและอัตราเงินเฟ้อ เศรษฐศาสตร์ของเคนส์ได้รับการพัฒนา
Fx- ตัวเลือก อัตราดอกเบี้ย ที่แตกต่างกัน
Forex- สภาพคล่อง   LLC