C- รหัส ชี้แจง เคลื่อนไหว ค่าเฉลี่ย

C- รหัส ชี้แจง เคลื่อนไหว ค่าเฉลี่ย

A2- หุ้น ตัวเลือก
Forex- อเมริกา
นายหน้า -forex- โบนัส   tanpa   เงินฝาก


ผู้ประกอบการค้า Forex ซอฟแวร์ สำหรับ Mac Forex- FM เครื่องส่งสัญญาณ - mp3 ผู้เล่น Forex -2- ชั่วโมง แผนภูมิ Forex- ชาร์ต สำหรับ MacBook Forex -trading- EUR -usd แผนภูมิ Forex- ธง และ เสาธง

ฉันรู้ว่านี่เป็นไปได้ด้วยการเพิ่มตาม: แต่ฉันต้องการหลีกเลี่ยงการเพิ่ม ฉันมี googled และไม่พบตัวอย่างที่เหมาะสมหรืออ่านได้ โดยทั่วไปฉันต้องการติดตามค่าเฉลี่ยเคลื่อนที่ของสตรีมกระแสข้อมูลจำนวนจุดลอยโดยใช้ตัวเลข 1000 ครั้งล่าสุดเป็นตัวอย่างข้อมูล วิธีที่ง่ายที่สุดในการทำแบบทดสอบนี้คือการใช้อาร์เรย์แบบวงกลมค่าเฉลี่ยเคลื่อนที่แบบเสวนาและค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายกว่าและพบว่าผลลัพธ์จากอาร์เรย์แบบวงกลมเหมาะกับความต้องการของฉันมากที่สุด ถาม 12 มิ.ย. 12 เวลา 4:38 หากความต้องการของคุณเรียบง่ายคุณอาจลองใช้ค่าเฉลี่ยเคลื่อนที่แบบเสวนา ใส่เพียงแค่คุณสร้างตัวแปรสะสมและเมื่อโค้ดของคุณดูที่ตัวอย่างแต่ละโค้ดจะอัปเดตข้อมูลสะสมด้วยค่าใหม่ คุณสามารถเลือกค่า alpha คงที่ระหว่าง 0 ถึง 1 และคำนวณค่านี้: คุณเพียงแค่หาค่า alpha ที่ผลของตัวอย่างที่กำหนดจะใช้เวลาประมาณ 1000 ตัวอย่างเท่านั้น อืมฉันไม่แน่ใจว่านี่เหมาะกับคุณแล้วตอนนี้ฉันวางมันไว้ที่นี่แล้ว ปัญหาคือ 1000 เป็นหน้าต่างยาวสวยสำหรับค่าเฉลี่ยเคลื่อนที่ที่อธิบายไม่แน่ใจว่ามีอัลฟาที่จะกระจายค่าเฉลี่ยมากกว่า 1000 หมายเลขล่าสุดโดยไม่ต้อง underflow ในการคำนวณจุดลอย แต่ถ้าคุณต้องการค่าเฉลี่ยที่เล็กลงเช่น 30 ตัวเลขหรือมากกว่านี่เป็นวิธีที่ง่ายและรวดเร็วในการดำเนินการ ตอบ 12 มิ.ย. 12 เวลา 4:44 1 ในโพสต์ของคุณ ค่าเฉลี่ยเคลื่อนที่ที่อธิบายได้จะทำให้ตัวแปรอัลฟ่าเป็นตัวแปรได้ ดังนั้นจึงช่วยให้สามารถใช้คำนวณค่าเฉลี่ยของฐานเวลา (เช่นไบต์ต่อวินาที) ถ้าเวลานับตั้งแต่การอัปเดตสะสมครั้งล่าสุดเป็นเวลามากกว่า 1 วินาทีคุณจะยอมให้ alpha เป็น 1.0 มิเช่นนั้นคุณสามารถปล่อยให้ alpha เป็น (usecs ตั้งแต่ update1000000 ครั้งล่าสุด) ndash jxh Jun 12 12 at 6:21 โดยทั่วไปฉันต้องการติดตามค่าเฉลี่ยเคลื่อนที่ของกระแสอย่างต่อเนื่องของกระแสตัวเลขจุดลอยใช้ล่าสุด 1000 หมายเลขเป็นตัวอย่างข้อมูล โปรดทราบว่าด้านล่างปรับปรุงชุดค่าผสมทั้งหมดเป็นองค์ประกอบที่เพิ่มขึ้นโดยไม่ต้องเสียค่าใช้จ่ายในการคำนวณ O (N) traversal เพื่อคำนวณผลรวม - จำเป็นสำหรับค่าเฉลี่ย - ตามความต้องการ ทั้งหมดถูกกำหนดเป็นพารามิเตอร์อื่นจาก T เพื่อสนับสนุนเช่น ใช้ยาวนานเมื่อรวม 1000 ยาว s, int สำหรับ char s หรือ double เพื่อรวม float s นี่เป็นบิตที่มีข้อบกพร่องในการที่ numsamples อาจผ่าน INTMAX - ถ้าคุณสนใจคุณสามารถใช้ unsigned long long หรือใช้สมาชิกข้อมูล bool พิเศษเพื่อบันทึกเมื่อเติมคอนเทนเนอร์เป็นครั้งแรกในขณะที่วนรอบ numsamples รอบ (ดีที่สุดแล้วเปลี่ยนชื่อบางอย่างที่ไม่เป็นอันตรายเช่น pos) ตอบ 12 มิ.ย. 12 at 5:19 สมมติว่าตัวดำเนินการ quotvoid (T sample) quot ก็คือ quotvoid operatorltlt (T sample) quot ndash o วันที่ 8 มิ.ย. 14 เวลา 11:52 น. oPhút ahhh เห็นดี จริงฉันตั้งใจจะให้โมฆะดำเนิน () (T ตัวอย่าง) แต่แน่นอนคุณสามารถใช้สิ่งที่คุณต้องการสัญกรณ์. จะแก้ไขขอบคุณ ndash Tony D มิ.ย. 8 14 at 14: 27 ค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวบ่งชี้ - EMA ลดลงค่าเฉลี่ยการเคลื่อนที่แบบ Exponential - EMA EMA 12 และ 26 วันเป็นค่าเฉลี่ยระยะสั้นที่ได้รับความนิยมสูงสุดและใช้เป็นตัวบ่งชี้เช่นค่าเฉลี่ยถ่วงน้ำหนักเคลื่อนที่ divergence (MACD) และค่าความแปรปรวนของราคา (PPO) โดยทั่วไปแล้ว EMA 50 และ 200 วันใช้เป็นสัญญาณของแนวโน้มในระยะยาว ผู้ค้าที่ใช้การวิเคราะห์ทางเทคนิคพบค่าเฉลี่ยเคลื่อนที่ที่มีประโยชน์และลึกซึ้งเมื่อใช้อย่างถูกต้อง แต่สร้างความหายนะเมื่อใช้ไม่ถูกต้องหรือถูกตีความผิด ค่าเฉลี่ยเคลื่อนที่ทั้งหมดที่ใช้กันโดยทั่วไปในการวิเคราะห์ทางเทคนิคเป็นไปตามลักษณะของตัวชี้วัดที่ล่าช้า ดังนั้นข้อสรุปที่ได้จากการนำค่าเฉลี่ยเคลื่อนที่ไปเป็นกราฟตลาดหนึ่ง ๆ ควรเป็นการยืนยันการเคลื่อนไหวของตลาดหรือเพื่อบ่งชี้ถึงความแข็งแกร่ง บ่อยครั้งเมื่อถึงเวลาที่เส้นค่าเฉลี่ยเคลื่อนไหวได้เปลี่ยนไปเพื่อสะท้อนการเคลื่อนไหวที่สำคัญในตลาดจุดที่เหมาะสมที่สุดของการเข้าสู่ตลาดได้ผ่านไปแล้ว EMA ช่วยลดปัญหานี้ได้บ้าง เนื่องจากการคำนวณ EMA ให้น้ำหนักมากขึ้นกับข้อมูลล่าสุดจึงทำให้การดำเนินการด้านราคาแย่ลงและตอบสนองได้เร็วขึ้น นี่เป็นที่พึงปรารถนาเมื่อใช้ EMA เพื่อรับสัญญาณการซื้อขาย การตีความ EMA เช่นเดียวกับตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่ทั้งหมดพวกเขาจะเหมาะกับตลาดที่มีแนวโน้มมากขึ้น เมื่อตลาดอยู่ในขาขึ้นที่แข็งแกร่งและยั่งยืน เส้นแสดงตัวบ่งชี้ EMA จะแสดงแนวโน้มขาขึ้นและทางกลับกันสำหรับแนวโน้มขาลง ผู้ค้าระมัดระวังจะไม่เพียง แต่ใส่ใจกับทิศทางของเส้น EMA แต่ยังสัมพันธ์ของอัตราการเปลี่ยนแปลงจากแถบหนึ่งไปอีก ตัวอย่างเช่นในขณะที่การดำเนินการตามราคาของขาขึ้นที่แข็งแกร่งจะเริ่มแผ่ออกและพลิกกลับอัตราการเปลี่ยนแปลงของ EMA จากแถบหนึ่งไปยังอีกส่วนหนึ่งจะเริ่มลดลงไปจนกว่าจะถึงเวลาดังกล่าวที่บรรทัดตัวบ่งชี้จะราบเรียบและอัตราการเปลี่ยนแปลงเป็นศูนย์ เนื่องจากผลกระทบที่ปกคลุมด้วยวัตถุฉนวนถึงจุดนี้หรือแม้กระทั่งไม่กี่บาร์ก่อนการดำเนินการด้านราคาน่าจะได้กลับรายการไปแล้ว ดังนั้นจึงเป็นไปได้ว่าการสังเกตการลดอัตราการเปลี่ยนแปลงของ EMA ที่สอดคล้องกันอาจเป็นตัวบ่งชี้ที่สามารถช่วยป้องกันภาวะที่กลืนไม่เข้าคายไม่ออกซึ่งเกิดจากผลกระทบที่เกิดจากการเคลื่อนที่โดยเฉลี่ย การใช้ EMA ทั่วไปของ EMA มักใช้ร่วมกับตัวบ่งชี้อื่น ๆ เพื่อยืนยันการย้ายตลาดที่สำคัญและเพื่อวัดความถูกต้อง สำหรับผู้ค้าที่ค้าขายระหว่างวันและตลาดที่เคลื่อนไหวอย่างรวดเร็ว EMA จะสามารถใช้งานได้มากขึ้น ผู้ค้ามักใช้ EMA เพื่อหาอคติในการซื้อขาย ตัวอย่างเช่นหาก EMA ในแผนภูมิรายวันแสดงแนวโน้มสูงขึ้นกลยุทธ์การค้าระหว่างวันอาจเป็นการค้าเฉพาะจากด้านยาวบนแผนภูมิระหว่างวันเท่านั้นมันเป็นไปได้ที่จะใช้ค่าเฉลี่ยเคลื่อนที่ใน C โดยไม่จำเป็นต้องมีหน้าต่าง ของตัวอย่าง Ive พบว่าฉันสามารถเพิ่มประสิทธิภาพบิตโดยการเลือกขนาดหน้าต่าง thats อำนาจของสองเพื่อให้สามารถขยับบิตแทนการหาร แต่ไม่จำเป็นต้องบัฟเฟอร์จะดี มีวิธีแสดงผลลัพธ์เฉลี่ยเคลื่อนที่ใหม่ตามผลการค้นหาเดิมและตัวอย่างใหม่กำหนดค่าเฉลี่ยเคลื่อนที่ตัวอย่างเช่นข้ามหน้าต่างตัวอย่าง 4 ตัวอย่าง: เพิ่มตัวอย่างใหม่ e: ค่าเฉลี่ยเคลื่อนที่สามารถใช้งานได้แบบ recursively , แต่สำหรับการคำนวณที่แน่นอนของค่าเฉลี่ยเคลื่อนที่คุณต้องจำตัวอย่างการป้อนข้อมูลที่เก่าแก่ที่สุดในผลรวม (เช่นในตัวอย่างของคุณ) สำหรับค่าเฉลี่ยเคลื่อนที่ N ที่คุณคำนวณ: โดยที่ yn คือสัญญาณขาออกและ xn เป็นสัญญาณขาเข้า อีคิว (1) สามารถเขียน recursively เป็นดังนั้นคุณจำเป็นต้องจำตัวอย่าง xn-N เพื่อคำนวณ (2) ที่ระบุโดย Conrad Turner คุณสามารถใช้หน้าต่างแทนยาวได้ (ไม่ จำกัด ) แทนซึ่งจะช่วยให้คุณสามารถคำนวณเอาท์พุทได้เฉพาะจากผลลัพธ์ที่ผ่านมาและอินพุทปัจจุบัน: แต่นี่ไม่ใช่ค่าเฉลี่ยเคลื่อนที่ (unweighted) แต่เป็นค่าชี้แจง (อย่างน้อยที่สุดในทางทฤษฎี) คุณไม่เคยลืมอะไรเลย (น้ำหนักเพียงเล็กน้อยและเล็กลงสำหรับตัวอย่างที่ไกลในอดีต) ฉันใช้ค่าเฉลี่ยเคลื่อนที่โดยไม่มีหน่วยความจำรายการสำหรับโปรแกรมติดตาม GPS ที่ฉันเขียน ฉันเริ่มต้นด้วย 1 ตัวอย่างและหารด้วย 1 เพื่อให้ได้ค่าเฉลี่ยปัจจุบัน จากนั้นผมจะเพิ่มตัวอย่าง anothe และหารด้วย 2 เป็นค่าเฉลี่ยปัจจุบัน นี้ยังคงจนกว่าฉันจะได้รับความยาวเฉลี่ย ทุกครั้งหลังจากนั้นฉันเพิ่มในตัวอย่างใหม่ให้ได้ค่าเฉลี่ยและลบค่าเฉลี่ยดังกล่าวออกจากยอดรวม ฉันไม่ใช่นักคณิตศาสตร์ แต่ดูเหมือนจะเป็นวิธีที่ดีที่จะทำ ฉันคิดว่ามันจะเปิดท้องของคนที่แต่งตัวประหลาดคณิตศาสตร์จริง แต่ก็จะเปิดออกเป็นหนึ่งในวิธีที่ได้รับการยอมรับในการทำมัน และทำงานได้ดี เพียงแค่จำไว้ว่ายิ่งความยาวของคุณยิ่งใหญ่เท่าไรก็ยิ่งช้าลงตามสิ่งที่คุณต้องการทำ นั่นอาจไม่สำคัญตลอดเวลา แต่เมื่อไปตามดาวเทียมถ้าคุณช้าเส้นทางอาจอยู่ไกลจากตำแหน่งจริงและจะดูไม่ดี คุณอาจมีช่องว่างระหว่างจุดเริ่มต้นและจุดต่อท้าย ฉันเลือกความยาวของ 15 ปรับปรุง 6 ครั้งต่อนาทีเพื่อให้ได้อย่างราบรื่นเพียงพอและไม่ได้รับไกลจากตำแหน่งนั่งจริงกับจุดเส้นทางที่ราบรื่น ตอบ 16 พค. 16 ที่ 23:03 เริ่มต้นทั้งหมด 0, นับ 0 (ทุกครั้งที่เห็นค่าใหม่จากนั้นหนึ่งอินพุท (scanf) หนึ่งเพิ่ม totalnewValue, หนึ่งที่เพิ่มขึ้น (นับ) หนึ่งหารเฉลี่ย (totalcount) นี่จะเป็นค่าเฉลี่ยเคลื่อนที่มากกว่า input ทั้งหมดในการคํานวณคาเฉลี่ยโดยใชเพียง 4 อินพุทตอไปเทานั้นจะตองใช4 inputvariables อาจคัดลอก input แตละ input ไปยัง inputvariable ที่สูงกวาจากนั้นคา new moving average เปน sum ของ inputvariables 4 หารดวย 4 (right shift 2) ดีถ้าทุกปัจจัยการผลิตเป็นบวกเพื่อให้การคำนวณเฉลี่ยตอบกุมภาพันธ์ 3 15 ที่ 4:06 ที่จริงจะคำนวณค่าเฉลี่ยรวมและไม่เฉลี่ยเคลื่อนไหวตามนับได้รับผลกระทบขนาดใหญ่ของตัวอย่างการป้อนข้อมูลใหม่ ๆ กลายเป็น vanishingly ขนาดเล็ก ndash Hilmar Feb 3 15 เวลา 13:53 คำตอบของคุณ 2017 Stack Exchange, Inc
Forex- เปโซ ต่อ ดอลลาร์ สิงคโปร์
Forex   โบรกเกอร์ -Mac -os- x