พยากรณ์ เคลื่อนไหว เฉลี่ย - ฤดูกาล

พยากรณ์ เคลื่อนไหว เฉลี่ย - ฤดูกาล

ที่ดีที่สุด ออนไลน์ ซื้อขาย บ้าน
Forex- PPC
Cotacao -forex- จังหวะ จริง


Forex- ออสเตรเลีย รีวิว ที่ดีที่สุด ไบนารี ตัวเลือก โบรกเกอร์ เปรียบเทียบ Forex- ประสบความสำเร็จ ผู้ประกอบการค้า การตรวจทาน ทั่วโลก ข้าม - IPC -trading- ระบบ Forex -trading- เริ่มต้น คู่มือ รูปแบบไฟล์ PDF วาด Bollinger วง

การย้ายการคาดการณ์เชิงปริมาณเฉลี่ย ตามที่คุณอาจคาดเดาเรากำลังมองหาวิธีการดั้งเดิมบางอย่างที่คาดการณ์ไว้ แต่หวังว่าสิ่งเหล่านี้เป็นการนำเสนอที่คุ้มค่าสำหรับปัญหาด้านคอมพิวเตอร์บางส่วนที่เกี่ยวข้องกับการใช้การคาดการณ์ในสเปรดชีต ในหลอดเลือดดำนี้เราจะดำเนินการต่อโดยการเริ่มต้นตั้งแต่เริ่มต้นและเริ่มทำงานกับการคาดการณ์ Moving Average การย้ายการคาดการณ์เฉลี่ย ทุกคนคุ้นเคยกับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยไม่คำนึงถึงว่าพวกเขาเชื่อหรือไม่ว่า นักศึกษาทุกคนทำแบบฝึกหัดตลอดเวลา ลองนึกถึงคะแนนการทดสอบของคุณในหลักสูตรที่คุณจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา ให้สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดหวังอะไรสำหรับคะแนนการทดสอบที่สองของคุณคุณคิดอย่างไรว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดอย่างไรว่าเพื่อนของคุณอาจคาดเดาคะแนนการทดสอบครั้งต่อไปคุณคิดว่าพ่อแม่ของคุณคาดการณ์คะแนนการทดสอบต่อไปได้ไม่ว่า การทำร้ายทั้งหมดที่คุณอาจทำกับเพื่อนและผู้ปกครองของคุณพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังว่าคุณจะได้รับบางสิ่งบางอย่างในพื้นที่ของ 85 ที่คุณเพิ่งได้ ดีตอนนี้ให้สมมติว่าแม้จะมีการโปรโมตด้วยตัวคุณเองกับเพื่อน ๆ ของคุณคุณสามารถประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้สิ่งที่ทุกอย่างที่เกี่ยวข้องและไม่แยแสไป คาดว่าคุณจะได้รับการทดสอบครั้งที่สามมีสองแนวทางที่น่าจะเป็นไปได้สำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่ พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่าควันเกี่ยวกับความฉลาดของเขา เขาจะได้รับอีก 73 ถ้าเขาโชคดี บางทีพ่อแม่จะพยายามสนับสนุนและพูด quotWell เพื่อให้ห่างไกลได้รับ 85 และ 73 ดังนั้นคุณควรคิดเกี่ยวกับการเกี่ยวกับ (85 73) 2 79 ฉันไม่รู้ว่าบางทีถ้าคุณไม่ปาร์ตี้ และเหวี่ยงพังพอนไปทั่วสถานที่และถ้าคุณเริ่มต้นทำมากขึ้นการศึกษาที่คุณจะได้รับคะแนนสูงขึ้นทั้งสองประมาณการเหล่านี้เป็นจริงการคาดการณ์เฉลี่ยย้าย อันดับแรกใช้คะแนนล่าสุดของคุณเพื่อคาดการณ์ประสิทธิภาพในอนาคตของคุณเท่านั้น นี่เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ข้อมูลระยะเวลาหนึ่ง ข้อที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้ข้อมูลสองช่วง ให้สมมติว่าคนเหล่านี้ทั้งหมด busting ในจิตใจที่ดีของคุณมีการแบ่งประเภทของคุณออกและคุณตัดสินใจที่จะทำดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในด้านหน้าของ quotalliesquot ของคุณ คุณใช้การทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจ ดังนั้นตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษาที่กำลังจะมาถึงและตามปกติแล้วคุณรู้สึกว่าจำเป็นที่จะต้องกระตุ้นให้ทุกคนคาดการณ์เกี่ยวกับวิธีที่คุณจะทำในการทดสอบครั้งล่าสุด ดีหวังว่าคุณจะเห็นรูปแบบ ตอนนี้หวังว่าคุณจะเห็นรูปแบบนี้ คุณเชื่อว่าเป็นนกหวีดที่ถูกต้องที่สุดในขณะที่เราทำงาน ตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ของเราซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle While We Work คุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีต ก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11 แจ้งให้ทราบว่าค่าเฉลี่ยย้ายผ่านข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้เวลาสามช่วงล่าสุดสำหรับการคาดการณ์แต่ละครั้ง นอกจากนี้คุณควรสังเกตด้วยว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อพัฒนาการคาดการณ์ล่าสุดของเรา นี้แน่นอนแตกต่างจากแบบจำลองการเรียบเรียงชี้แจง Ive รวมการคาดคะเนของคำพูดราคาตลาดเนื่องจากเราจะใช้คำเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดความถูกต้องในการคาดการณ์ ตอนนี้ฉันต้องการนำเสนอผลที่คล้ายคลึงกันสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 2 ช่วง รายการสำหรับเซลล์ C5 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C6 ถึง C11 แจ้งให้ทราบว่าขณะนี้มีเพียงข้อมูลล่าสุดสองชิ้นที่ใช้ล่าสุดในการคาดการณ์เท่านั้น อีกครั้งฉันได้รวมการคาดคะเน quotpost เพื่อวัตถุประสงค์ในการอธิบายและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์ บางสิ่งบางอย่างอื่นที่มีความสำคัญที่จะแจ้งให้ทราบล่วงหน้า สำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ m-period เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้ในการคาดคะเนเท่านั้น ไม่มีอะไรอื่นที่จำเป็น สำหรับการคาดการณ์ค่าเฉลี่ยของระยะเวลา m-period เมื่อทำนายการคาดการณ์ของ quotpast ให้สังเกตว่าการทำนายครั้งแรกเกิดขึ้นในช่วง m 1 ทั้งสองประเด็นนี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเรา การพัฒนาฟังก์ชัน Average Moving Average ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้ความยืดหยุ่นได้มากขึ้น รหัสดังต่อไปนี้ โปรดทราบว่าปัจจัยการผลิตเป็นจำนวนงวดที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์ คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการ Function MovingAverage (Historical, NumberOfPeriods) ในฐานะ Single Declaring และ Initializing ตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim Single Dim HistoricalSize As Integer ตัวแปรที่ Initializing ตัวแปร Counter 1 สะสม 0 การกำหนดขนาดของอาร์เรย์ Historical HistoricalSize Historical.Count สำหรับ Counter 1 ถึง NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้ล่าสุด Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในคลาส คุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลของการคำนวณปรากฏขึ้นที่ที่ควรทำดังนี้การใช้สเปรดชีตของการปรับฤดูกาลและการทำให้เรียบแบบทวีคูณเป็นเรื่องง่ายในการปรับฤดูกาลและพอดีกับรูปแบบการคำนวณแบบเลขแจงโดยใช้ Excel ภาพหน้าจอและแผนภูมิด้านล่างนี้นำมาจากสเปรดชีตที่ได้รับการตั้งค่าเพื่อแสดงการปรับฤดูกาลตามฤดูกาลและการเพิ่มประสิทธิภาพเชิงเส้นแบบเสวนาเชิงเส้นสำหรับข้อมูลการขายรายไตรมาสต่อไปนี้จาก Outboard Marine: หากต้องการรับสำเนาไฟล์สเปรดชีตเองคลิกที่นี่ รุ่นของการเรียบแบบเสวนาเชิงเส้นที่จะใช้ที่นี่เพื่อจุดประสงค์ในการสาธิตคือรุ่น Brown8217s เพียงเพราะสามารถนำมาใช้กับคอลัมน์เดียวของสูตรและมีเพียงหนึ่งค่าคงที่ที่ราบเรียบเพื่อเพิ่มประสิทธิภาพ โดยปกติแล้วมันเป็นการดีที่จะใช้รุ่น Holt8217s ที่มีค่าคงที่ที่ราบเรียบแยกต่างหากสำหรับระดับและแนวโน้ม ขั้นตอนการคาดการณ์ดำเนินการดังนี้ (i) ข้อมูลแรกมีการปรับฤดูกาล (2) จากนั้นข้อมูลคาดการณ์จะถูกสร้างขึ้นสำหรับข้อมูลที่ปรับฤดูกาลตามฤดูกาลโดยการให้ความลื่นที่เป็นเส้นตรงและ (iii) ในที่สุดการคาดการณ์ที่ปรับฤดูกาลจะได้รับการคาดการณ์ล่วงหน้าเพื่อให้ได้ประมาณการสำหรับชุดเดิม . ขั้นตอนการปรับฤดูกาลตามฤดูกาลจะดำเนินการในคอลัมน์ D ถึง G. ขั้นตอนแรกในการปรับฤดูกาลคือการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลาง (ดำเนินการในคอลัมน์ D) ซึ่งสามารถทำได้โดยการใช้ค่าเฉลี่ยโดยเฉลี่ยของค่าเฉลี่ยสองปีที่สองซึ่งจะหักล้างโดยระยะเวลาหนึ่งเทียบกับแต่ละอื่น ๆ (ต้องใช้ค่าเฉลี่ยของค่าชดเชยทั้งสองค่ามากกว่าค่าเฉลี่ยเพียงค่าเดียวสำหรับจุดศูนย์กลางเมื่อจำนวนของฤดูกาลเป็นไปได้) ขั้นตอนต่อไปคือการคำนวณอัตราส่วนกับค่าเฉลี่ยเคลื่อนที่ - i.e ข้อมูลเดิมที่หารด้วยค่าเฉลี่ยเคลื่อนที่ในแต่ละช่วงเวลา - ซึ่งทำไว้ที่นี่ในคอลัมน์ E. (เรียกอีกอย่างว่าส่วนประกอบ quottrend-cyclequot ของรูปแบบตราบใดที่แนวโน้มและผลกระทบของวงจรธุรกิจอาจถูกพิจารณาว่าเป็นข้อมูลทั้งหมด ยังคงอยู่หลังจากเฉลี่ยตลอดทั้งปีที่มีค่าของข้อมูลแน่นอนการเปลี่ยนแปลงรายเดือนซึ่งไม่ได้เกิดจากฤดูกาลอาจพิจารณาจากปัจจัยอื่น ๆ จำนวนมาก แต่ค่าเฉลี่ยเฉลี่ย 12 เดือนจะดีกว่าในระดับที่ดี) ดัชนีตามฤดูกาลโดยประมาณสำหรับแต่ละฤดูกาลจะคำนวณโดยเฉลี่ยเป็นอัตราส่วนแรกสำหรับฤดูกาลนั้นโดยเฉพาะซึ่งทำในเซลล์ G3-G6 โดยใช้สูตร AVERAGEIF อัตราส่วนโดยเฉลี่ยจะถูกปรับใหม่เพื่อให้รวมเป็น 100 เท่าของจำนวนงวดในแต่ละฤดูกาลหรือ 400 ในกรณีนี้ซึ่งทำในเซลล์ H3-H6 ด้านล่างในคอลัมน์ F สูตร VLOOKUP ใช้เพื่อแทรกค่าดัชนีตามฤดูกาลที่เหมาะสมในแต่ละแถวของตารางข้อมูลตามไตรมาสของปีที่แสดง ค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลางและข้อมูลที่ปรับฤดูกาลจะมีลักษณะเช่นนี้: โปรดทราบว่าค่าเฉลี่ยเคลื่อนที่โดยปกติแล้วจะมีลักษณะคล้ายกับซีรี่ส์ที่ปรับปรุงตามฤดูกาลและจะสั้นกว่าในทั้งสองด้าน แผ่นงานอื่นในไฟล์ Excel เดียวกันแสดงการประยุกต์ใช้โมเดลการปรับรูปแบบเลขแจงเชิงเส้นให้เป็นข้อมูลที่ปรับฤดูกาลแล้วโดยเริ่มต้นที่คอลัมน์ G. ค่าของค่าคงที่ที่ราบเรียบ (alpha) ถูกป้อนเหนือคอลัมน์พยากรณ์ (ที่นี่ในเซลล์ H9) และ เพื่ออำนวยความสะดวกให้กำหนดชื่อช่วงอัลฟา.quot (ชื่อถูกกำหนดโดยใช้คำสั่ง quotInsertNameCreatequot) โมเดล LES ได้รับการเตรียมใช้งานโดยตั้งค่าการคาดการณ์สองชุดแรกเท่ากับมูลค่าที่แท้จริงครั้งแรกของชุดที่ปรับฤดูกาล สูตรที่ใช้ในการพยากรณ์ LES คือรูปแบบการเรียกซ้ำรูปแบบเดียวของแบบ Brown8217s: สูตรนี้ถูกป้อนลงในเซลล์ที่ตรงกับระยะเวลาที่สาม (ที่นี่เซลล์ H15) และคัดลอกจากที่นั่น สังเกตว่าการคาดการณ์ LES สำหรับงวดปัจจุบันหมายถึงการสังเกตก่อนหน้านี้สองครั้งและข้อผิดพลาดในการคาดการณ์ทั้งสองข้อก่อนหน้าเช่นเดียวกับค่าของอัลฟา ดังนั้นสูตรการคาดการณ์ในแถว 15 อ้างอิงเฉพาะข้อมูลที่มีอยู่ในแถว 14 และก่อนหน้า (แน่นอนถ้าเราอยากจะใช้แบบเรียบง่ายแทนการเรียบแบบเสียดสีเชิงเส้นเราสามารถแทนที่สูตร SES ได้ที่นี่แทนนอกจากนี้เรายังสามารถใช้ Holt8217s แทน Brown8217s LES แบบซึ่งจะต้องใช้สองคอลัมน์เพิ่มเติมของสูตรเพื่อคำนวณระดับและแนวโน้ม ที่ใช้ในการคาดการณ์) ข้อผิดพลาดจะคำนวณในคอลัมน์ถัดไป (ที่นี่คอลัมน์ J) โดยการลบการคาดการณ์ออกจากค่าที่แท้จริง รากหมายถึงกำลังสองกำลังคำนวณเป็นรากที่สองของความแปรปรวนของข้อผิดพลาดบวกสี่เหลี่ยมของค่าเฉลี่ย 2) ในการคำนวณค่าเฉลี่ยและความแปรปรวนของข้อผิดพลาดในสูตรนี้ช่วงสองช่วงแรกจะถูกแยกออกเนื่องจากโมเดลไม่ได้เริ่มคาดการณ์จริงจนกว่าจะถึงเวลาที่กำหนดไว้ ช่วงที่สาม (แถวที่ 15 ในสเปรดชีต) คุณสามารถหาค่าที่ดีที่สุดของอัลฟาได้ด้วยตนเองโดยการเปลี่ยนค่า alpha จนกว่าจะหาค่า RMSE ต่ำสุดหรือมิฉะนั้นคุณสามารถใช้ quotSolverquot เพื่อทำ minimization ให้ถูกต้อง ค่าของอัลฟาที่พบ Solver แสดงไว้ที่นี่ (alpha0.471) มักเป็นความคิดที่ดีที่จะพล็อตข้อผิดพลาดของโมเดล (ในหน่วยที่แปลง) และคำนวณและวางแผนการเชื่อมโยงกันที่เวลาไม่ถึงหนึ่งฤดูกาล นี่คือชุดข้อมูลอนุกรมเวลาของข้อผิดพลาด (มีการปรับฤดูกาล): การคำนวณความคลาดเคลื่อนของข้อผิดพลาดจะคำนวณโดยใช้ฟังก์ชัน CORREL () เพื่อคำนวณความสัมพันธ์ของข้อผิดพลาดกับตัวเองที่ล้าหลังโดยหนึ่งหรือหลายช่วงเวลา - รายละเอียดจะแสดงในรูปแบบสเปรดชีต . นี่คือพล็อตของความสัมพันธ์ระหว่างข้อผิดพลาดของข้อผิดพลาดห้าข้อแรก: ความสัมพันธ์ระหว่างความล่าช้าที่ 1 ถึง 3 ใกล้เคียงกับศูนย์มาก แต่ความล่าช้าที่ความล่าช้า 4 (ซึ่งมีค่าเท่ากับ 0.35) มีความลำบากเล็กน้อย การปรับฤดูกาลไม่ประสบความสำเร็จอย่างสมบูรณ์ อย่างไรก็ตามความเป็นจริงมีนัยสำคัญเพียงเล็กน้อยเท่านั้น 95 ความสำคัญของแถบสำหรับการทดสอบว่า autocorrelations แตกต่างจากศูนย์อย่างมีนัยสำคัญเป็นบวกหรือลบ 2SQRT (n-k) โดยที่ n คือขนาดของกลุ่มตัวอย่างและ k คือความล่าช้า n นี่คือ 38 และ k จะแตกต่างกันไปตั้งแต่ 1 ถึง 5 ดังนั้นรากที่สองของ n-minus-k มีค่าประมาณ 6 สำหรับทั้งหมดดังนั้นจึงมีข้อ จำกัด ในการทดสอบความสำคัญทางสถิติของการเบี่ยงเบนจากศูนย์เป็นค่าบวก - หรือ - ลบ 26 หรือ 0.33 ถ้าคุณเปลี่ยนแปลงค่า alpha ด้วยมือในรูปแบบ Excel นี้คุณสามารถสังเกตผลกระทบของชุดข้อมูลเวลาและแปลงความคลาดเคลื่อนของข้อผิดพลาดรวมทั้งข้อผิดพลาดของราก - ค่าเฉลี่ย - สี่เหลี่ยมซึ่งจะแสดงด้านล่าง ที่ด้านล่างของสเปรดชีตสูตรการคาดการณ์จะถูกเพิ่มลงในอนาคตโดยเพียงแทนที่การคาดการณ์สำหรับค่าจริง ณ จุดที่ข้อมูลจริงหมดลงนั่นคือ ที่ quotquest ในอนาคตจะเริ่มขึ้น (ในคำอื่น ๆ ในแต่ละเซลล์ที่มีค่าข้อมูลในอนาคตจะเกิดขึ้นการอ้างอิงเซลล์จะแทรกขึ้นซึ่งชี้ไปที่การคาดการณ์ที่ทำขึ้นสำหรับช่วงเวลานั้น) สูตรอื่น ๆ ทั้งหมดจะถูกคัดลอกมาจากด้านบน: สังเกตว่าข้อผิดพลาดในการคาดการณ์ของ อนาคตทั้งหมดจะคำนวณเป็นศูนย์ ไม่ได้หมายความว่าข้อผิดพลาดที่เกิดขึ้นจริงจะเป็นศูนย์ แต่เป็นเพียงการสะท้อนถึงข้อเท็จจริงที่ว่าเพื่อวัตถุประสงค์ในการคาดการณ์เราจะสมมติว่าข้อมูลในอนาคตจะเท่ากับการคาดการณ์โดยเฉลี่ย การคาดการณ์ของ LES สำหรับข้อมูลที่ปรับฤดูกาลแล้วมีลักษณะเช่นนี้: ด้วยค่า alpha นี้โดยเฉพาะซึ่งเป็นค่าที่เหมาะสมสำหรับการคาดการณ์ล่วงหน้าหนึ่งครั้งแนวโน้มที่คาดการณ์จะเพิ่มขึ้นเล็กน้อยสะท้อนถึงแนวโน้มในท้องถิ่นที่เกิดขึ้นในช่วง 2 ปีที่ผ่านมา หรือไม่ก็. สำหรับค่าอัลฟาอื่น ๆ อาจมีการคาดการณ์แนวโน้มที่แตกต่างกันออกไป โดยปกติแล้วควรพิจารณาว่าจะเกิดอะไรขึ้นกับการคาดการณ์แนวโน้มในระยะยาวเมื่ออัลฟามีความหลากหลายเนื่องจากค่าที่ดีที่สุดสำหรับการคาดการณ์ในระยะสั้นจะไม่จำเป็นต้องเป็นค่าที่ดีที่สุดสำหรับการคาดการณ์อนาคตที่ไกลกว่านี้ ตัวอย่างเช่นนี่เป็นผลที่ได้รับถ้าค่าของอัลฟาถูกตั้งด้วยตนเองเป็น 0.25: แนวโน้มในระยะยาวที่คาดการณ์ไว้ตอนนี้เป็นค่าลบมากกว่าบวกด้วยค่า alpha ที่เล็กลงโมเดลจะให้น้ำหนักกับข้อมูลเก่ามากขึ้นใน การประมาณระดับปัจจุบันและแนวโน้มและการคาดการณ์ในระยะยาวสะท้อนถึงแนวโน้มการลดลงที่เกิดขึ้นในช่วง 5 ปีที่ผ่านมาแทนที่จะเป็นแนวโน้มที่สูงขึ้น แผนภูมินี้ยังแสดงให้เห็นอย่างชัดเจนว่ารูปแบบที่มีค่าน้อยลงของอัลฟาจะช้ากว่าในการตอบสนองต่อจุด quoturn ในข้อมูลดังนั้นจึงมีแนวโน้มที่จะทำให้ข้อผิดพลาดของเครื่องหมายเดียวกันในช่วงเวลาหลายช่วงเวลา ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 1 ขั้นตอนมีขนาดใหญ่กว่าค่าเฉลี่ยที่ได้รับก่อนหน้า (RMSE เท่ากับ 34.4 มากกว่า 27.4) และมีความเกี่ยวพันกันในเชิงบวกอย่างมาก ความสัมพันธ์กับค่าความคลาดของความล่าช้าที่ 0.56 มีค่ามากกว่า 0.33 ค่านัยสำคัญทางสถิติสำหรับค่าเบี่ยงเบนจากศูนย์ เป็นทางเลือกหนึ่งในการลดคุณค่าของอัลฟาเพื่อที่จะนำแนวคิดอนุรักษ์นิยมไปสู่การคาดการณ์ในระยะยาวได้มากขึ้นปัจจัยบางอย่างในบางครั้งจะถูกเพิ่มลงในแบบจำลองเพื่อให้แนวโน้มที่คาดการณ์ราบเรียบออกไปหลังจากไม่กี่ช่วงเวลา ขั้นตอนสุดท้ายในการสร้างแบบจำลองการคาดการณ์คือการให้เหตุผลในการคาดการณ์ LES โดยการคูณด้วยดัชนีตามฤดูกาลที่เหมาะสม ดังนั้นการคาดการณ์ของ reseasonalized ในคอลัมน์ I เป็นเพียงผลิตภัณฑ์ของดัชนีตามฤดูกาลในคอลัมน์ F และการคาดการณ์ LES ตามฤดูกาลในคอลัมน์ H. เป็นเรื่องง่ายในการคำนวณช่วงความเชื่อมั่นสำหรับการคาดการณ์ล่วงหน้าอย่างน้อยหนึ่งครั้งโดยแบบจำลองนี้: คำนวณ RMSE (ข้อผิดพลาดของราก - กลาง - สี่เหลี่ยมซึ่งเป็นเพียงรากที่สองของ MSE) จากนั้นคำนวณช่วงความเชื่อมั่นสำหรับการคาดการณ์ที่ปรับตามฤดูกาลโดยการบวกและลบสองครั้ง RMSE (โดยทั่วไปช่วงความเชื่อมั่น 95 สำหรับการคาดการณ์ล่วงหน้าหนึ่งรอบใกล้เคียงกับการคาดการณ์ของจุดบวกหรือลบสองเท่าของค่าเบี่ยงเบนมาตรฐานโดยประมาณของข้อผิดพลาดในการคาดการณ์โดยสมมติว่าการกระจายข้อผิดพลาดมีค่าใกล้เคียงปกติและขนาดตัวอย่าง มีขนาดใหญ่พอพูดว่า 20 หรือมากกว่าที่นี่ RMSE แทนที่จะเป็นค่าเบี่ยงเบนมาตรฐานของข้อผิดพลาดคือค่าประมาณการที่ดีที่สุดของค่าส่วนเบี่ยงเบนมาตรฐานของข้อผิดพลาดในการคาดการณ์ในอนาคตเนื่องจากใช้รูปแบบที่มีความลำเอียงและการสุ่มอย่างเหมาะสม) สำหรับการคาดการณ์ตามฤดูกาลปรับแล้ว reseasonalized พร้อมกับการคาดการณ์โดยการคูณด้วยดัชนีตามฤดูกาลที่เหมาะสม ในกรณีนี้ RMSE มีค่าเท่ากับ 27.4 และการคาดการณ์ตามฤดูกาลสำหรับงวดแรกในอนาคต (ธ.ค. 93) คือ 273.2 ดังนั้นช่วงความเชื่อมั่น 95 ที่ปรับฤดูกาลแล้วมีค่าตั้งแต่ 273.2-227.4 218.4 ถึง 273.2227.4 328.0 คูณค่าขีด จำกัด เหล่านี้ตามดัชนี Decembers ตามฤดูกาลที่ 68.61 เราได้รับความเชื่อมั่นด้านล่างและด้านบนของ 149.8 และ 225.0 รอบการคาดการณ์จุดธันวาคม -93 ที่ 187.4 ความเชื่อมั่นที่กำหนดไว้สำหรับการคาดการณ์มากกว่าหนึ่งรอบระยะเวลาข้างหน้าโดยทั่วไปจะขยายตัวเมื่อช่วงเวลาที่คาดการณ์เพิ่มขึ้นเนื่องจากความไม่แน่นอนเกี่ยวกับระดับและแนวโน้มตลอดจนปัจจัยฤดูกาล แต่เป็นการยากที่จะคำนวณโดยทั่วไปด้วยวิธีการวิเคราะห์ (วิธีที่เหมาะสมในการคำนวณขีดจำกัดความเชื่อมั่นในการคาดการณ์ LES คือการใช้ทฤษฎี ARIMA แต่ความไม่แน่นอนในดัชนีตามฤดูกาลเป็นอีกเรื่องหนึ่ง) ถ้าคุณต้องการช่วงความเชื่อมั่นที่สมจริงสำหรับการคาดการณ์ล่วงหน้ามากกว่าหนึ่งช่วงเวลา ข้อผิดพลาดในบัญชีวิธีที่ดีที่สุดคือการใช้วิธีเชิงประจักษ์ตัวอย่างเช่นเพื่อให้ได้ช่วงความเชื่อมั่นสำหรับการคาดการณ์ล่วงหน้า 2 ขั้นตอนคุณสามารถสร้างคอลัมน์อื่นในสเปรดชีตเพื่อคำนวณการคาดการณ์ล่วงหน้า 2 ขั้นตอนสำหรับทุกช่วงเวลา ( โดยการคาดการณ์ล่วงหน้าอย่างน้อยหนึ่งก้าว) จากนั้นคำนวณ RMSE ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 2 ขั้นตอนและใช้ข้อมูลนี้เป็นพื้นฐานสำหรับช่วงความเชื่อมั่นแบบ 2 ขั้นตอนล่วงหน้าในทางปฏิบัติค่าเฉลี่ยเคลื่อนที่จะให้ค่าเฉลี่ยที่ดีของค่าเฉลี่ยของชุดข้อมูลเวลาถ้าค่าเฉลี่ยคือ คงที่หรือค่อยๆเปลี่ยนไป ในกรณีของค่าเฉลี่ยคงที่ค่าที่มากที่สุดของ m จะให้ค่าประมาณที่ดีที่สุดของค่าเฉลี่ยต้นแบบ ระยะสังเกตอีกต่อไปจะเป็นค่าเฉลี่ยของผลกระทบของความแปรปรวน วัตถุประสงค์ของการให้ m ที่มีขนาดเล็กคือการให้การคาดการณ์เพื่อตอบสนองต่อการเปลี่ยนแปลงในกระบวนการอ้างอิง เพื่อแสดงให้เห็นว่าเราเสนอชุดข้อมูลที่รวมการเปลี่ยนแปลงค่าเฉลี่ยที่แท้จริงของชุดข้อมูลเวลา ภาพแสดงชุดข้อมูลเวลาที่ใช้สำหรับการแสดงภาพพร้อมกับความต้องการเฉลี่ยที่สร้างขึ้น ค่าเฉลี่ยเริ่มต้นเป็นค่าคงที่ที่ 10 เริ่มต้นที่ 21 เวลาจะเพิ่มขึ้นโดยหนึ่งหน่วยในแต่ละช่วงเวลาจนกว่าจะถึงค่า 20 ในเวลา 30 จากนั้นจะกลายเป็นค่าคงที่อีกครั้ง ข้อมูลจะถูกจำลองด้วยการเพิ่มค่าเฉลี่ยเสียงสุ่มจากการแจกแจงแบบปกติที่มีค่าเป็นศูนย์และส่วนเบี่ยงเบนมาตรฐาน 3. ผลการจำลองจะปัดเป็นจำนวนเต็มใกล้ที่สุด ตารางแสดงการสังเกตแบบจำลองที่ใช้สำหรับตัวอย่าง เมื่อเราใช้ตารางเราต้องจำไว้ว่าในเวลาใดก็ตามข้อมูลที่ผ่านมาเป็นที่รู้จักเท่านั้น การประมาณค่าพารามิเตอร์ของโมเดลสำหรับค่าที่แตกต่างกันสามค่าของ m จะแสดงพร้อมกับค่าเฉลี่ยของชุดข้อมูลเวลาในรูปด้านล่าง ตัวเลขนี้แสดงค่าประมาณเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยในแต่ละครั้งและไม่ใช่การคาดการณ์ การคาดการณ์จะเปลี่ยนเส้นโค้งค่าเฉลี่ยเคลื่อนที่ไปทางขวาตามช่วงเวลา หนึ่งข้อสรุปจะเห็นได้ชัดทันทีจากรูป สำหรับทั้งสามค่าประมาณค่าเฉลี่ยเคลื่อนที่จะล่าช้ากว่าเส้นตรงโดยมีความล่าช้าเพิ่มขึ้นจาก m ความล่าช้าคือระยะห่างระหว่างรูปแบบกับการประมาณในมิติเวลา เนื่องจากความล่าช้าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ต่ำกว่าข้อสังเกตเป็นค่าเฉลี่ยจะเพิ่มขึ้น ความลำเอียงของตัวประมาณคือความแตกต่างในเวลาที่กำหนดในค่าเฉลี่ยของแบบจำลองและค่าเฉลี่ยที่คำนวณโดยค่าเฉลี่ยเคลื่อนที่ ความอคติเมื่อค่าเฉลี่ยเพิ่มขึ้นเป็นลบ สำหรับค่าเฉลี่ยที่ลดลงอคติเป็นบวก ความล่าช้าในเวลาและอคติที่นำมาใช้ในการประมาณค่านี้เป็นหน้าที่ของ m ค่าที่มากขึ้นของ m ยิ่งใหญ่ขนาดของความล่าช้าและอคติ สำหรับซีรีส์ที่เพิ่มขึ้นอย่างต่อเนื่องโดยมีแนวโน้ม a. ค่าของความล่าช้าและความลำเอียงของ estimator ของค่าเฉลี่ยจะได้รับในสมการด้านล่าง เส้นโค้งตัวอย่างไม่ตรงกับสมการเหล่านี้เนื่องจากตัวอย่างไม่ได้เพิ่มขึ้นอย่างต่อเนื่องแทนที่จะเริ่มเป็นค่าคงที่เปลี่ยนเป็นแนวโน้มและจะกลายเป็นค่าคงที่อีกครั้ง นอกจากนี้เส้นโค้งตัวอย่างยังได้รับผลกระทบจากเสียงดัง การคาดการณ์ค่าเฉลี่ยของช่วงเวลาในอนาคตจะแสดงโดยการขยับเส้นโค้งไปทางขวา ความล่าช้าและความลำเอียงเพิ่มขึ้นตามสัดส่วน สมการด้านล่างแสดงถึงความล่าช้าและความลำเอียงของระยะเวลาคาดการณ์ในอนาคตเมื่อเทียบกับพารามิเตอร์ของโมเดล อีกครั้งสูตรเหล่านี้เป็นชุดเวลาที่มีแนวโน้มเชิงเส้นคงที่ เราไม่ควรแปลกใจที่ผลลัพธ์นี้ ตัวประมาณค่าเฉลี่ยเคลื่อนที่อยู่บนพื้นฐานสมมติฐานค่าเฉลี่ยคงที่และตัวอย่างมีแนวโน้มเป็นเส้นตรงตามค่าเฉลี่ยในช่วงระยะเวลาการศึกษา เนื่องจากชุดข้อมูลเรียลไทม์จะไม่ค่อยตรงตามสมมติฐานของรูปแบบใดก็ตามเราควรเตรียมพร้อมสำหรับผลลัพธ์ดังกล่าว นอกจากนี้เรายังสามารถสรุปจากรูปที่ความแปรปรวนของเสียงรบกวนมีผลมากที่สุดสำหรับขนาดเล็ก ค่าประมาณมีความผันผวนมากขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ที่ 5 กว่าค่าเฉลี่ยเคลื่อนที่ของ 20 เรามีความต้องการที่ขัดแย้งกันในการเพิ่ม m เพื่อลดผลกระทบของความแปรปรวนเนื่องจากเสียงรบกวนและลด m เพื่อให้การคาดการณ์ตอบสนองต่อการเปลี่ยนแปลงได้มากขึ้น ในความหมาย ข้อผิดพลาดคือความแตกต่างระหว่างข้อมูลจริงกับค่าคาดการณ์ ถ้าชุดข้อมูลเวลาเป็นค่าคงที่มูลค่าที่คาดไว้ของข้อผิดพลาดจะเป็นศูนย์และความแปรปรวนของข้อผิดพลาดจะประกอบด้วยคำที่เป็นหน้าที่ของและคำที่สองซึ่งเป็นความแปรปรวนของเสียง คำที่หนึ่งคือค่าความแปรปรวนของค่าเฉลี่ยที่ประมาณด้วยตัวอย่างของการสังเกตการณ์ m สมมติว่าข้อมูลมาจากประชากรที่มีค่าเฉลี่ยคงที่ ระยะนี้จะลดลงโดยทำให้ m มีขนาดใหญ่ที่สุด m ที่มีขนาดใหญ่ทำให้การคาดการณ์ไม่ตอบสนองต่อการเปลี่ยนแปลงชุดข้อมูลอ้างอิง เพื่อให้การคาดการณ์สามารถตอบสนองต่อการเปลี่ยนแปลงได้เราต้องการให้ m มีขนาดเล็กที่สุด (1) แต่จะเพิ่มความแปรปรวนของข้อผิดพลาด การคาดการณ์ในทางปฏิบัติต้องมีค่ากลาง การคาดการณ์ด้วย Excel การคาดการณ์ add-in จะใช้สูตรค่าเฉลี่ยเคลื่อนที่ ตัวอย่างด้านล่างแสดงการวิเคราะห์โดย add-in สำหรับข้อมูลตัวอย่างในคอลัมน์ B 10 ข้อสังเกตแรกมีการจัดทำดัชนี -9 ถึง 0 เมื่อเทียบกับตารางด้านบนดัชนีระยะเวลาจะเปลี่ยนไป -10 การสังเกตสิบข้อแรกให้ค่าเริ่มต้นสำหรับการประมาณและใช้คำนวณค่าเฉลี่ยเคลื่อนที่สำหรับช่วงเวลา 0 คอลัมน์ MA (10) (C) แสดงค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ ค่าเฉลี่ยเคลื่อนที่ m อยู่ในเซลล์ C3 คอลัมน์ Fore (1) (D) จะแสดงการคาดการณ์สำหรับระยะเวลาหนึ่งในอนาคต ช่วงคาดการณ์อยู่ในเซลล์ D3 เมื่อช่วงคาดการณ์มีการเปลี่ยนแปลงไปเป็นจำนวนที่มากขึ้นตัวเลขในคอลัมน์ Fore จะถูกเลื่อนลง คอลัมน์ Err (1) (E) แสดงความแตกต่างระหว่างการสังเกตและการคาดการณ์ ตัวอย่างเช่นการสังเกตในเวลาที่ 1 คือ 6 ค่าที่คาดการณ์ไว้จากค่าเฉลี่ยเคลื่อนที่ในช่วงเวลา 0 คือ 11.1 ข้อผิดพลาดคือ -5.1 ค่าเบี่ยงเบนมาตรฐานและค่าเฉลี่ยส่วนเบี่ยงเบนเฉลี่ย (MAD) คำนวณในเซลล์ E6 และ E7 ตามลำดับ
Forex- ซื้อขาย นาฬิกา ดาวน์โหลด
Forex -trading- การใช้งาน