A- เฉลี่ยเคลื่อนที่ คาดการณ์

A- เฉลี่ยเคลื่อนที่ คาดการณ์

Chi- FA- Soldi -Con - IL- อัตราแลกเปลี่ยน
ตัวเลือก -on- ขี้ หุ้น สามารถ ที่คุณ ทำ
Binary   ตัวเลือก การพนัน หรือ การซื้อขาย


Forex ไบ สำนักงาน Forex- กลยุทธ์ สร้าง ดาวน์โหลด Forex- ทีวี ฟรี Forex- ที่ดีที่สุด ตัวบ่งชี้ ปี 2014 พลัดถิ่น เคลื่อนไหว เฉลี่ย - สูตร metastock Forex- ร่อน กลยุทธ์ ใน ภาษาอูรดู

ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงที่ 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะยิ่งเรียบขึ้น ระยะห่างที่สั้นลงค่าเฉลี่ยของค่าเฉลี่ยที่เคลื่อนที่ได้ใกล้เคียงกับจุดข้อมูลที่เกิดขึ้นจริงค่าเฉลี่ยขั้นสูง: วิธีการใช้งานค่าที่แท้จริงของค่าเฉลี่ยเคลื่อนที่จะคำนวณแนวโน้มและการกลับรายการ วัดความแรงของโมเมนตัมของสินทรัพย์และกำหนดพื้นที่ที่อาจเป็นสินทรัพย์ที่จะได้รับการสนับสนุนหรือความต้านทาน ในส่วนนี้เราจะชี้ให้เห็นว่าช่วงเวลาที่ต่างกันสามารถตรวจสอบโมเมนตัมได้อย่างไรและค่าเฉลี่ยเคลื่อนที่ที่จะเป็นประโยชน์ในการตั้งค่าการหยุดขาดทุนได้อย่างไร นอกจากนี้เราจะกล่าวถึงบางส่วนของความสามารถและข้อ จำกัด ของค่าเฉลี่ยเคลื่อนที่ที่ควรพิจารณาเมื่อใช้เป็นส่วนหนึ่งของขั้นตอนการซื้อขาย เทรนด์แนวโน้มการระบุตัวตนเป็นหนึ่งในหน้าที่หลักของการย้ายค่าเฉลี่ยซึ่งใช้โดยผู้ค้าส่วนใหญ่ที่พยายามทำให้แนวโน้มเป็นเพื่อนของตน ค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้ที่ล่าช้า ซึ่งหมายความว่าพวกเขาไม่ได้ทำนายแนวโน้มใหม่ แต่ยืนยันแนวโน้มเมื่อมีการจัดตั้งแล้ว ดังที่เห็นในรูปที่ 1 หุ้นจะถือเป็นหุ้นในขาขึ้นเมื่อราคาอยู่เหนือค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยถ่วงขึ้น ในทางตรงกันข้ามผู้ประกอบการค้าจะใช้ราคาต่ำกว่าค่าเฉลี่ยที่ลาดลงเพื่อยืนยันขาลง ผู้ค้าจำนวนมากจะพิจารณาเฉพาะการถือครองฐานะยาวในสินทรัพย์เมื่อราคาซื้อขายสูงกว่าค่าเฉลี่ยเคลื่อนที่ กฎง่ายๆนี้สามารถช่วยให้มั่นใจได้ว่าแนวโน้มการทำงานในผู้ค้าชอบ โมเมนตัมผู้ค้าเริ่มต้นจำนวนมากถามว่ามันเป็นไปได้อย่างไรในการวัดโมเมนตัมและค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้เพื่อจัดการกับความสำเร็จดังกล่าวได้อย่างไร คำตอบง่ายๆคือให้ความสำคัญกับช่วงเวลาที่ใช้ในการสร้างค่าเฉลี่ยเนื่องจากแต่ละช่วงเวลาสามารถให้ข้อมูลเชิงลึกที่มีคุณค่าในรูปแบบต่างๆของโมเมนตัม โดยทั่วไปแล้วโมเมนตัมระยะสั้นสามารถวัดได้โดยดูที่ค่าเฉลี่ยเคลื่อนที่ซึ่งให้ความสำคัญกับระยะเวลา 20 วันหรือน้อยกว่า การพิจารณาค่าเฉลี่ยเคลื่อนที่ที่สร้างขึ้นโดยมีระยะเวลา 20 ถึง 100 วันโดยทั่วไปถือว่าเป็นตัววัดที่ดีของแรงในระยะปานกลาง สุดท้ายค่าเฉลี่ยเคลื่อนที่ใด ๆ ที่ใช้เวลา 100 วันหรือมากกว่าในการคำนวณสามารถใช้เป็นตัวชี้วัดความเป็นโมเมนตัมในระยะยาว สามัญสำนึกควรบอกคุณว่าค่าเฉลี่ยเคลื่อนที่ 15 วันเป็นตัววัดระยะสั้นที่เหมาะสมกว่าค่าเฉลี่ยเคลื่อนที่ 200 วัน หนึ่งในวิธีการที่ดีที่สุดในการกำหนดความแรงและทิศทางของโมเมนตัมของสินทรัพย์คือการวางค่าเฉลี่ยเคลื่อนที่สามตัวลงบนแผนภูมิและให้ความสนใจใกล้เคียงกับความสัมพันธ์ระหว่างกัน ค่าเฉลี่ยเคลื่อนที่สามตัวที่ใช้โดยทั่วไปมีเฟรมเวลาต่างกันเพื่อแสดงถึงการเคลื่อนไหวของราคาในระยะสั้นระยะกลางและระยะยาว ในรูปที่ 2 แรงดึงดูดที่แข็งแกร่งขึ้นจะเห็นได้เมื่อค่าเฉลี่ยระยะสั้นอยู่เหนือค่าเฉลี่ยระยะยาวและค่าเฉลี่ยทั้งสองจะแตกต่างกัน ในทางตรงกันข้ามเมื่อค่าเฉลี่ยระยะสั้นมีค่าต่ำกว่าค่าเฉลี่ยระยะยาวในระยะยาวโมเมนตัมจะอยู่ในทิศทางที่ลดลง การสนับสนุนการใช้ค่าเฉลี่ยเคลื่อนที่อีกแบบหนึ่งคือการกำหนดราคาที่เป็นไปได้ ไม่ต้องใช้ประสบการณ์มากในการจัดการกับค่าเฉลี่ยเคลื่อนที่เพื่อสังเกตว่าราคาที่ลดลงของสินทรัพย์มักจะหยุดและกลับทิศทางในระดับเดียวกับค่าเฉลี่ยที่สำคัญ ตัวอย่างเช่นในรูปที่ 3 คุณจะเห็นได้ว่าค่าเฉลี่ยเคลื่อนที่ 200 วันสามารถตรึงราคาหุ้นหลังจากที่ตกลงมาจากระดับสูงที่ 32 ได้ผู้ค้าหลายรายคาดว่าจะพลิกกลับจากค่าเฉลี่ยเคลื่อนที่ที่สำคัญและจะใช้ค่าเฉลี่ยอื่น ๆ ตัวบ่งชี้ทางเทคนิคเพื่อยืนยันการเคลื่อนย้ายที่คาดไว้ ความต้านทานเมื่อราคาของสินทรัพย์ต่ำกว่าระดับที่มีอิทธิพลในการสนับสนุนเช่นค่าเฉลี่ยเคลื่อนที่ 200 วันก็เป็นเรื่องปกติที่จะเห็นค่าเฉลี่ยที่ทำหน้าที่เป็นอุปสรรคสำคัญที่ทำให้นักลงทุนไม่สามารถผลักดันให้ราคาสูงกว่าค่าเฉลี่ยดังกล่าวได้ ตามที่คุณสามารถดูได้จากตารางด้านล่างความต้านทานนี้มักใช้โดยผู้ค้าเป็นสัญลักษณ์เพื่อทำกำไรหรือปิดสถานะยาว ๆ ที่มีอยู่ ผู้ขายสั้นจำนวนมากยังใช้ค่าเฉลี่ยเหล่านี้เป็นจุดเริ่มต้นเนื่องจากราคามักจะตีกลับแนวต้านและยังคงเคลื่อนไหวต่ำลง หากคุณเป็นนักลงทุนที่มีฐานะที่ยาวนานในสินทรัพย์ที่ซื้อขายต่ำกว่าค่าเฉลี่ยเคลื่อนที่ที่สำคัญคุณอาจสนใจที่จะติดตามระดับอย่างใกล้ชิดเนื่องจากอาจส่งผลต่อมูลค่าการลงทุนของคุณมาก Stop-Losses ลักษณะการสนับสนุนและความต้านทานของค่าเฉลี่ยเคลื่อนที่ช่วยให้เป็นเครื่องมือในการบริหารความเสี่ยง ความสามารถในการเคลื่อนตัวเฉลี่ยเพื่อระบุสถานที่เชิงกลยุทธ์ในการตั้งคำสั่งหยุดขาดทุนช่วยให้ผู้ค้าสามารถตัดตำแหน่งที่เสียไปก่อนที่จะเติบโตได้ ดังที่เห็นในรูปที่ 5 ผู้ค้าที่ถือครองหุ้นในหุ้นยาวและตั้งคำสั่งหยุดขาดทุนต่ำกว่าค่าเฉลี่ยที่มีอิทธิพลสามารถช่วยตัวเองได้เงินเป็นจำนวนมาก การใช้ค่าเฉลี่ยเคลื่อนที่เพื่อตั้งคำสั่งหยุดขาดทุนเป็นกุญแจสำคัญในกลยุทธ์การซื้อขายที่ประสบความสำเร็จในทางปฏิบัติค่าเฉลี่ยเคลื่อนที่จะให้ค่าเฉลี่ยที่ดีของค่าเฉลี่ยของชุดข้อมูลเวลาถ้าค่าเฉลี่ยมีค่าคงที่หรือเปลี่ยนแปลงช้า ในกรณีของค่าเฉลี่ยคงที่ค่าที่มากที่สุดของ m จะให้ค่าประมาณที่ดีที่สุดของค่าเฉลี่ยต้นแบบ ระยะสังเกตอีกต่อไปจะเป็นค่าเฉลี่ยของผลกระทบของความแปรปรวน วัตถุประสงค์ของการให้ m ที่มีขนาดเล็กคือการให้การคาดการณ์เพื่อตอบสนองต่อการเปลี่ยนแปลงในกระบวนการอ้างอิง เพื่อแสดงให้เห็นว่าเราเสนอชุดข้อมูลที่รวมการเปลี่ยนแปลงค่าเฉลี่ยที่แท้จริงของชุดข้อมูลเวลา ภาพแสดงชุดข้อมูลเวลาที่ใช้สำหรับการแสดงภาพพร้อมกับความต้องการเฉลี่ยที่สร้างขึ้น ค่าเฉลี่ยเริ่มต้นเป็นค่าคงที่ที่ 10 เริ่มต้นที่ 21 เวลาจะเพิ่มขึ้นโดยหนึ่งหน่วยในแต่ละช่วงเวลาจนกว่าจะถึงค่า 20 ในเวลา 30 จากนั้นจะกลายเป็นค่าคงที่อีกครั้ง ข้อมูลจะถูกจำลองด้วยการเพิ่มค่าเฉลี่ยเสียงสุ่มจากการแจกแจงแบบปกติที่มีค่าเป็นศูนย์และส่วนเบี่ยงเบนมาตรฐาน 3. ผลการจำลองจะปัดเป็นจำนวนเต็มใกล้ที่สุด ตารางแสดงการสังเกตแบบจำลองที่ใช้สำหรับตัวอย่าง เมื่อเราใช้ตารางเราต้องจำไว้ว่าในเวลาใดก็ตามข้อมูลที่ผ่านมาเป็นที่รู้จักเท่านั้น การประมาณค่าพารามิเตอร์ของโมเดลสำหรับค่าที่แตกต่างกันสามค่าของ m จะแสดงพร้อมกับค่าเฉลี่ยของชุดข้อมูลเวลาในรูปด้านล่าง ตัวเลขนี้แสดงค่าประมาณเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยในแต่ละครั้งและไม่ใช่การคาดการณ์ การคาดการณ์จะเปลี่ยนเส้นโค้งค่าเฉลี่ยเคลื่อนที่ไปทางขวาตามช่วงเวลา หนึ่งข้อสรุปจะเห็นได้ชัดทันทีจากรูป สำหรับทั้งสามค่าประมาณค่าเฉลี่ยเคลื่อนที่จะล่าช้ากว่าเส้นตรงโดยมีความล่าช้าเพิ่มขึ้นจาก m ความล่าช้าคือระยะห่างระหว่างรูปแบบกับการประมาณในมิติเวลา เนื่องจากความล่าช้าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ต่ำกว่าข้อสังเกตเป็นค่าเฉลี่ยจะเพิ่มขึ้น ความลำเอียงของตัวประมาณคือความแตกต่างในเวลาที่กำหนดในค่าเฉลี่ยของแบบจำลองและค่าเฉลี่ยที่คำนวณโดยค่าเฉลี่ยเคลื่อนที่ ความอคติเมื่อค่าเฉลี่ยเพิ่มขึ้นเป็นลบ สำหรับค่าเฉลี่ยที่ลดลงอคติเป็นบวก ความล่าช้าในเวลาและอคติที่นำมาใช้ในการประมาณค่านี้เป็นหน้าที่ของ m ค่าที่มากขึ้นของ m ยิ่งใหญ่ขนาดของความล่าช้าและอคติ สำหรับซีรีส์ที่เพิ่มขึ้นอย่างต่อเนื่องโดยมีแนวโน้ม a. ค่าของความล่าช้าและความลำเอียงของ estimator ของค่าเฉลี่ยจะได้รับในสมการด้านล่าง เส้นโค้งตัวอย่างไม่ตรงกับสมการเหล่านี้เนื่องจากตัวอย่างไม่ได้เพิ่มขึ้นอย่างต่อเนื่องแทนที่จะเริ่มเป็นค่าคงที่เปลี่ยนเป็นแนวโน้มและจะกลายเป็นค่าคงที่อีกครั้ง นอกจากนี้เส้นโค้งตัวอย่างยังได้รับผลกระทบจากเสียงดัง การคาดการณ์ค่าเฉลี่ยของช่วงเวลาในอนาคตจะแสดงโดยการขยับเส้นโค้งไปทางขวา ความล่าช้าและความลำเอียงเพิ่มขึ้นตามสัดส่วน สมการด้านล่างแสดงถึงความล่าช้าและความลำเอียงของระยะเวลาคาดการณ์ในอนาคตเมื่อเทียบกับพารามิเตอร์ของโมเดล อีกครั้งสูตรเหล่านี้เป็นชุดเวลาที่มีแนวโน้มเชิงเส้นคงที่ เราไม่ควรแปลกใจที่ผลลัพธ์นี้ ตัวประมาณค่าเฉลี่ยเคลื่อนที่อยู่บนพื้นฐานสมมติฐานค่าเฉลี่ยคงที่และตัวอย่างมีแนวโน้มเป็นเส้นตรงตามค่าเฉลี่ยในช่วงระยะเวลาการศึกษา เนื่องจากชุดข้อมูลเรียลไทม์จะไม่ค่อยตรงตามสมมติฐานของรูปแบบใดก็ตามเราควรเตรียมพร้อมสำหรับผลลัพธ์ดังกล่าว นอกจากนี้เรายังสามารถสรุปจากรูปที่ความแปรปรวนของเสียงรบกวนมีผลมากที่สุดสำหรับขนาดเล็ก ค่าประมาณมีความผันผวนมากขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ที่ 5 กว่าค่าเฉลี่ยเคลื่อนที่ของ 20 เรามีความต้องการที่ขัดแย้งกันในการเพิ่ม m เพื่อลดผลกระทบของความแปรปรวนเนื่องจากเสียงรบกวนและลด m เพื่อให้การคาดการณ์ตอบสนองต่อการเปลี่ยนแปลงได้มากขึ้น ในความหมาย ข้อผิดพลาดคือความแตกต่างระหว่างข้อมูลจริงกับค่าคาดการณ์ ถ้าชุดข้อมูลเวลาเป็นค่าคงที่มูลค่าที่คาดไว้ของข้อผิดพลาดจะเป็นศูนย์และความแปรปรวนของข้อผิดพลาดจะประกอบด้วยคำที่เป็นหน้าที่ของและคำที่สองซึ่งเป็นความแปรปรวนของเสียง คำที่หนึ่งคือค่าความแปรปรวนของค่าเฉลี่ยที่ประมาณด้วยตัวอย่างของการสังเกตการณ์ m สมมติว่าข้อมูลมาจากประชากรที่มีค่าเฉลี่ยคงที่ ระยะนี้จะลดลงโดยทำให้ m มีขนาดใหญ่ที่สุด m ที่มีขนาดใหญ่ทำให้การคาดการณ์ไม่ตอบสนองต่อการเปลี่ยนแปลงชุดข้อมูลอ้างอิง เพื่อให้การคาดการณ์สามารถตอบสนองต่อการเปลี่ยนแปลงได้เราต้องการให้ m มีขนาดเล็กที่สุด (1) แต่จะเพิ่มความแปรปรวนของข้อผิดพลาด การคาดการณ์ในทางปฏิบัติต้องมีค่ากลาง การคาดการณ์ด้วย Excel การคาดการณ์ add-in จะใช้สูตรค่าเฉลี่ยเคลื่อนที่ ตัวอย่างด้านล่างแสดงการวิเคราะห์โดย add-in สำหรับข้อมูลตัวอย่างในคอลัมน์ B 10 ข้อสังเกตแรกมีการจัดทำดัชนี -9 ถึง 0 เมื่อเทียบกับตารางด้านบนดัชนีระยะเวลาจะเปลี่ยนไป -10 การสังเกตสิบข้อแรกให้ค่าเริ่มต้นสำหรับการประมาณและใช้คำนวณค่าเฉลี่ยเคลื่อนที่สำหรับช่วงเวลา 0 คอลัมน์ MA (10) (C) แสดงค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ ค่าเฉลี่ยเคลื่อนที่ m อยู่ในเซลล์ C3 คอลัมน์ Fore (1) (D) จะแสดงการคาดการณ์สำหรับระยะเวลาหนึ่งในอนาคต ช่วงคาดการณ์อยู่ในเซลล์ D3 เมื่อช่วงคาดการณ์มีการเปลี่ยนแปลงไปเป็นจำนวนที่มากขึ้นตัวเลขในคอลัมน์ Fore จะถูกเลื่อนลง คอลัมน์ Err (1) (E) แสดงความแตกต่างระหว่างการสังเกตและการคาดการณ์ ตัวอย่างเช่นการสังเกตในเวลาที่ 1 คือ 6 ค่าที่คาดการณ์ไว้จากค่าเฉลี่ยเคลื่อนที่ในช่วงเวลา 0 คือ 11.1 ข้อผิดพลาดคือ -5.1 ค่าเบี่ยงเบนมาตรฐานและค่าเฉลี่ยส่วนเบี่ยงเบนเฉลี่ย (MAD) คำนวณในเซลล์ E6 และ E7 ตามลำดับ
Forex   โบรกเกอร์ - IM- Vergleich
62   เฉลี่ยเคลื่อนที่