ตัวอย่าง ของ เฉลี่ยเคลื่อนที่ แบบ

ตัวอย่าง ของ เฉลี่ยเคลื่อนที่ แบบ

FRR -forex- Pvt   Ltd - - บังกาลอร์
ขั้นสูง การซื้อขาย หุ้น
Forex- ตัวชี้วัด   MetaTrader


Forex- แอปเปิ้ล ส่งสัญญาณ ทางเลือก zu - อัตราแลกเปลี่ยน ทอง อัตราแลกเปลี่ยน ซื้อขาย เวลา Bollinger วง - เครื่องหมายการค้า ฟรี ตัวเลือก -trading- สัมมนา Forex- ธุรกิจ เป็น ฮาลาล หรือ Haram

ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงเวลา 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะเรียบขึ้น ค่าเฉลี่ยของค่าเฉลี่ยที่เคลื่อนที่ได้ใกล้เคียงกับจุดข้อมูลที่แท้จริงค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก: ข้อมูลพื้นฐานช่วงหลายปีที่ผ่านมาช่างเทคนิคพบปัญหาสองอย่างเกี่ยวกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ปัญหาแรกอยู่ในกรอบเวลาของค่าเฉลี่ยเคลื่อนที่ (MA) นักวิเคราะห์ทางเทคนิคส่วนใหญ่เชื่อว่าการดำเนินการด้านราคา การเปิดหรือปิดราคาหุ้นไม่เพียงพอที่จะขึ้นอยู่กับการคาดการณ์อย่างถูกต้องสัญญาณซื้อหรือขายของการกระทำแบบไขว้ MAs เพื่อแก้ปัญหานี้นักวิเคราะห์จึงกำหนดน้ำหนักให้มากที่สุดกับข้อมูลราคาล่าสุดโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบเรียบ (EMA) (เรียนรู้เพิ่มเติมเกี่ยวกับ Exploring Average Moved Average Weighed) ตัวอย่างเช่นใช้ MA 10 วันผู้วิเคราะห์จะใช้ราคาปิดของวันที่ 10 และคูณเลขนี้เป็น 10 วันที่เก้าโดยเก้าแปดวินาที วันโดยแปดและอื่น ๆ เพื่อแรกของ MA เมื่อรวมแล้วนักวิเคราะห์จะหารตัวเลขด้วยการเพิ่มตัวคูณ ถ้าคุณเพิ่มตัวคูณของตัวอย่าง MA 10 วันจำนวนเป็น 55 ตัวบ่งชี้นี้เรียกว่าค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเชิงเส้น (สำหรับการอ่านที่เกี่ยวข้องให้ดูที่ค่าเฉลี่ยเคลื่อนที่แบบธรรมดาทำให้แนวโน้มโดดเด่น) ช่างเทคนิคหลายคนเชื่อมั่นในค่าเฉลี่ยเคลื่อนที่แบบเรียบ (exponentially smoothed moving average - EMA) ตัวบ่งชี้นี้ได้รับการอธิบายด้วยวิธีต่างๆมากมายที่ทำให้นักเรียนและนักลงทุนสับสน บางทีคำอธิบายที่ดีที่สุดมาจาก John J. Murphys การวิเคราะห์ทางเทคนิคของตลาดการเงิน (เผยแพร่โดย New York Institute of Finance, 1999): ค่าเฉลี่ยเคลื่อนที่แบบเรียบเรียงตามที่อธิบายถึงปัญหาทั้งสองที่เกี่ยวข้องกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ประการแรกค่าเฉลี่ยที่ได้รับการจัดแจงโดยการชี้แจงให้น้ำหนักที่มากขึ้นกับข้อมูลล่าสุด ดังนั้นจึงเป็นค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก แต่ในขณะที่ให้ความสำคัญน้อยกว่ากับข้อมูลราคาในอดีตจะรวมถึงการคำนวณข้อมูลทั้งหมดในชีวิตของเครื่องมือ นอกจากนี้ผู้ใช้สามารถปรับน้ำหนักเพื่อให้น้ำหนักมากขึ้นหรือน้อยกว่ากับราคาวันล่าสุดซึ่งเพิ่มขึ้นเป็นเปอร์เซ็นต์ของมูลค่าวันก่อนหน้า ผลรวมของค่าเปอร์เซ็นต์ทั้งสองจะเพิ่มขึ้นเป็น 100 ตัวอย่างเช่นราคาสุดท้ายของวันอาจมีการกำหนดน้ำหนัก 10 (.10) ซึ่งจะเพิ่มลงในน้ำหนักของวันก่อนหน้า 90 (.90) นี้จะช่วยให้วันสุดท้าย 10 ของน้ำหนักรวม นี่จะเทียบเท่ากับค่าเฉลี่ย 20 วันโดยให้ราคาวันสุดท้ายมีค่าน้อยกว่า 5 (.05) กราฟแสดงดัชนี Nasdaq Composite Index ตั้งแต่สัปดาห์แรกในเดือนสิงหาคม 2543 ถึงวันที่ 1 มิถุนายน พ.ศ. 2544 ตามที่เห็นได้ชัด EMA ซึ่งในกรณีนี้ใช้ข้อมูลราคาปิดเหนือ ระยะเวลาเก้าวันมีสัญญาณขายที่ชัดเจนในวันที่ 8 กันยายน (มีเครื่องหมายลูกศรลงสีดำ) นี่เป็นวันที่ดัชนีทะลุแนว 4,000 จุด ลูกศรสีดำที่สองแสดงอีกขาลงที่ช่างเทคนิคกำลังคาดหวัง Nasdaq ไม่สามารถสร้างปริมาณและดอกเบี้ยได้เพียงพอจากนักลงทุนรายย่อยเพื่อทำลายเครื่องหมาย 3,000 จากนั้นก็พุ่งตัวลงสู่จุดต่ำสุดที่ 1619.58 ในวันที่ 4 เม. ย. แนวโน้มการขึ้นลงของวันที่ 12 เมษายนจะมีเครื่องหมายลูกศร ดัชนีปิดที่ 1,961.46 จุดและนักเทคนิคเริ่มเห็นผู้จัดการกองทุนสถาบันเริ่มที่จะรับข้อเสนอพิเศษบางอย่างเช่น Cisco, Microsoft และปัญหาด้านพลังงานบางส่วน การย้ายแบบจำลองการถดถอยเฉลี่ยและการเพิ่มขึ้นของค่าเฉลี่ยที่เป็นตัวชี้วัดการย้ายแบบจำลองการถดถอยเฉลี่ยและการอธิบายเป็นขั้นตอนแรกในการเคลื่อนย้ายโมเดลเชิงเส้นแบบสุ่มแบบเดินสุ่มและแบบจำลองเชิงเส้นแนวโน้มและรูปแบบที่ไม่เป็นทางการ สามารถอนุมานได้โดยใช้แบบจำลองที่เคลื่อนที่โดยเฉลี่ยหรือเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยเคลื่อนที่ (ท้องถิ่น) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้เป็นค่าพยากรณ์สำหรับอนาคตอันใกล้นี้ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยและแบบสุ่มโดยไม่มีการเลื่อนลอย กลยุทธ์เดียวกันสามารถใช้ในการประมาณและคาดการณ์แนวโน้มในท้องถิ่น ค่าเฉลี่ยเคลื่อนที่มักถูกเรียกว่า quotsmoothedquot version ของชุดเดิมเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลต่อการทำให้เรียบออกกระแทกในชุดเดิม โดยการปรับระดับการทำให้เรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราสามารถคาดหวังให้เกิดความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่ม รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยของค่าเฉลี่ยของ Y ที่เวลา t1 ที่ทำในเวลา t เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตการณ์ m ล่าสุด: (ที่นี่และที่อื่น ๆ ฉันจะใช้สัญลักษณ์ 8220Y-hat8221 เพื่อยืน สำหรับการคาดการณ์ของชุดข้อมูล Y เวลาที่เร็วที่สุดเท่าที่เป็นไปได้ก่อนวันที่โดยรูปแบบที่กำหนด) ค่าเฉลี่ยนี้เป็นศูนย์กลางในช่วง t- (m1) 2 ซึ่งหมายความว่าการประมาณค่าเฉลี่ยของท้องถิ่นจะมีแนวโน้มลดลงหลังค่าจริง ค่าเฉลี่ยของท้องถิ่นโดยประมาณ (m1) 2 ช่วงเวลา ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (m1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหในข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า m1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า m มีขนาดใหญ่มาก (เทียบกับความยาวของระยะเวลาประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นเรื่องปกติที่จะได้รับข้อมูลที่ดีที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้จะทำให้ได้คำที่ไม่เหมาะสมใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้ง quotsignalquot (ค่าเฉลี่ยในท้องถิ่น) หากเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 เทอมทำให้เกิดข้อผิดพลาดน้อยกว่าแบบจำลองการเดินแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากรูปแบบการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด วงเงินความเชื่อมั่นที่คำนวณโดย Statgraphics สำหรับการคาดการณ์ในระยะยาวของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะไม่ได้รับมากขึ้นเนื่องจากระยะขอบพยากรณ์อากาศเพิ่มขึ้น เห็นได้ชัดว่าไม่ถูกต้อง แต่น่าเสียดายที่ไม่มีทฤษฎีทางสถิติพื้นฐานที่บอกเราว่าช่วงความเชื่อมั่นควรจะกว้างขึ้นสำหรับรุ่นนี้อย่างไร อย่างไรก็ตามไม่ยากที่จะคำนวณค่าประมาณเชิงประจักษ์ถึงขีดจำกัดความเชื่อมั่นสำหรับการคาดการณ์ระยะยาวของเส้นขอบฟ้า ตัวอย่างเช่นคุณสามารถตั้งค่าสเปรดชีตที่จะใช้โมเดล SMA เพื่อคาดการณ์ล่วงหน้า 2 ขั้นตอนล่วงหน้า 3 ก้าวเป็นต้นภายในตัวอย่างข้อมูลที่ผ่านมา จากนั้นคุณสามารถคำนวณส่วนเบี่ยงเบนมาตรฐานตัวอย่างของข้อผิดพลาดในขอบฟ้าพยากรณ์แต่ละครั้งและสร้างช่วงความเชื่อมั่นสำหรับการคาดการณ์ในระยะยาวโดยการเพิ่มและลบคูณของส่วนเบี่ยงเบนมาตรฐานที่เหมาะสม ถ้าเราลองค่าเฉลี่ยเคลื่อนที่ 9 วันเราจะได้รับการคาดการณ์ที่ราบรื่นขึ้นและผลกระทบที่ปกคลุมด้วยวัตถุฉนวน: อายุเฉลี่ยอยู่ที่ 5 ช่วงเวลา ((91) 2) ถ้าเราใช้ค่าเฉลี่ยเคลื่อนที่ในระยะ 19 วันอายุเฉลี่ยจะเพิ่มขึ้นเป็น 10: สังเกตว่าแท้จริงแล้วการคาดการณ์ในขณะนี้ล้าหลังจุดหักเหประมาณ 10 รอบ นี่คือตารางที่เปรียบเทียบสถิติข้อผิดพลาดของพวกเขาซึ่งรวมถึงค่าเฉลี่ยระยะยาว 3 คำ: Model C ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่ 5 เทอมให้ผลตอบแทนน้อยที่สุดของ RMSE โดยมีขอบเล็กกว่า 3 ค่าเฉลี่ยระยะสั้นและระยะ 9 และสถิติอื่น ๆ ของพวกเขาเกือบจะเท่ากัน ดังนั้นในแบบจำลองที่มีสถิติข้อผิดพลาดที่คล้ายกันมากเราสามารถเลือกได้ว่าจะต้องการการตอบสนองเล็กน้อยหรือมีความเรียบขึ้นเล็กน้อยในการคาดการณ์หรือไม่ (ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักที่ชี้แจง) แบบจำลองค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายที่กล่าวมาข้างต้นมีคุณสมบัติที่ไม่พึงประสงค์ที่จะถือว่าข้อสังเกตสุดท้ายของ k อย่างเท่าเทียมกันและสมบูรณ์ละเว้นการสังเกตทั้งหมดก่อนหน้านี้ โดยนัยข้อมูลที่ผ่านมาควรจะลดในรูปแบบที่ค่อยๆมากขึ้นตัวอย่างเช่นข้อสังเกตล่าสุดควรมีน้ำหนักมากกว่า 2 ครั้งล่าสุดและครั้งที่ 2 ล่าสุดควรมีน้ำหนักน้อยกว่า 3 ครั้งล่าสุดและ อื่น ๆ แบบเรียบง่าย (SES) ทำให้สำเร็จได้ ให้ 945 แสดงถึงค่าคงที่ quotsmoothing (ตัวเลขระหว่าง 0 ถึง 1) วิธีหนึ่งในการเขียนแบบจำลองคือการกำหนดชุด L ซึ่งแสดงถึงระดับปัจจุบัน (นั่นคือค่าเฉลี่ยในท้องถิ่น) ของชุดข้อมูลดังกล่าวโดยประมาณจากข้อมูลจนถึงปัจจุบัน ค่าของ L ในเวลา t คำนวณจากค่าก่อนหน้าของตัวเองเช่นนี้ดังนั้นค่าที่เรียบนวลในปัจจุบันเป็นค่า interpolation ระหว่างค่าที่ได้จากการเรียบก่อนหน้าและการสังเกตการณ์ในปัจจุบันโดยที่ 945 ควบคุมความใกล้ชิดของค่าที่ถูก interpolation ไปเป็นค่าล่าสุด การสังเกต การคาดการณ์ในช่วงถัดไปเป็นเพียงค่าที่ได้รับการปรับปรุงในปัจจุบัน: เทียบเท่าเราสามารถแสดงการคาดการณ์ต่อไปได้โดยตรงในแง่ของการคาดการณ์ก่อนหน้านี้และข้อสังเกตก่อนหน้าในเวอร์ชันเทียบเท่าใด ๆ ต่อไปนี้ ในรุ่นแรกการคาดการณ์คือการแก้ไขระหว่างการคาดการณ์ก่อนหน้าและการสังเกตก่อนหน้านี้: ในรุ่นที่สองการคาดการณ์ครั้งต่อไปจะได้รับโดยการปรับการคาดการณ์ก่อนหน้านี้ในทิศทางของข้อผิดพลาดก่อนหน้าด้วยจำนวนเศษ 945 ข้อผิดพลาดเกิดขึ้นที่ เวลา t ในรุ่นที่สามการคาดการณ์คือค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกระดับ (เช่นลด) โดยมีปัจจัยการลดราคา 1-945: สูตรการคาดการณ์เวอร์ชันแก้ไขเป็นวิธีที่ง่ายที่สุดในการใช้งานหากคุณใช้โมเดลในสเปรดชีต: เหมาะกับรูปแบบ เซลล์เดียวและมีการอ้างอิงเซลล์ชี้ไปที่การคาดการณ์ก่อนหน้านี้การสังเกตก่อนหน้าและเซลล์ที่เก็บค่า 945 ไว้ โปรดทราบว่าถ้า 945 1 รูปแบบ SES จะเทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า 945 0 รูปแบบ SES จะเท่ากับโมเดลเฉลี่ยโดยสมมติว่าค่าที่เรียบเป็นครั้งแรกจะเท่ากับค่าเฉลี่ย (กลับไปด้านบนสุดของหน้า) อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์การเรียบอย่างง่ายและชี้แจงคือ 1 945 เทียบกับระยะเวลาที่คาดการณ์การคำนวณ (นี้ไม่ควรจะเป็นที่เห็นได้ชัด แต่ก็สามารถแสดงได้โดยการประเมินชุดอนันต์.) ดังนั้นการคาดการณ์เฉลี่ยเคลื่อนที่ง่ายมีแนวโน้มที่จะล่าช้าหลังจุดหักเหประมาณ 1 945 รอบระยะเวลา ตัวอย่างเช่นเมื่อ 945 0.5 ความล่าช้าเป็น 2 ช่วงเวลาเมื่อ 945 0.2 ความล่าช้าเป็น 5 ช่วงเวลาที่ 945 0.1 ความล่าช้าเป็น 10 ช่วงเวลาและอื่น ๆ สำหรับอายุโดยเฉลี่ยที่ระบุ (เช่นจำนวนเงินที่ล่าช้า) การคาดการณ์การทำให้การทำให้ลื่นไหลเรียบแบบสมมุติแบบง่าย (SES) ค่อนข้างดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่อย่างง่าย (SMA) เนื่องจากมีน้ำหนักมากขึ้นในการสังเกตการณ์ล่าสุด - คือ มีการเปลี่ยนแปลงมากขึ้นในช่วงไม่กี่ปีที่ผ่านมา ตัวอย่างเช่นโมเดล SMA ที่มี 9 คำและแบบ SES ที่มี 945 0.2 มีอายุเฉลี่ยอยู่ที่ 5 สำหรับข้อมูลในการคาดการณ์ แต่แบบจำลอง SES จะให้น้ำหนักมากกว่า 3 ค่าที่มากกว่าแบบจำลอง SMA และที่ ในเวลาเดียวกันมันไม่ได้ 8220forget8221 เกี่ยวกับค่ามากกว่า 9 งวดเก่าดังที่แสดงในแผนภูมินี้ข้อได้เปรียบที่สำคัญอีกประการหนึ่งของโมเดล SES ในรูปแบบ SMA คือรูปแบบ SES ใช้พารามิเตอร์การปรับให้ราบเรียบซึ่งเป็นตัวแปรที่เปลี่ยนแปลงได้อย่างต่อเนื่อง โดยใช้อัลกอริธึม quotsolverquot เพื่อลดข้อผิดพลาดกำลังสองเฉลี่ย ค่าที่เหมาะสมที่สุดของ 945 ในแบบจำลอง SES สำหรับชุดข้อมูลนี้จะเท่ากับ 0.2961 ดังแสดงในที่นี้อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 10.2961 3.4 งวดซึ่งใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ 6-term ระยะสั้น การคาดการณ์ระยะยาวจากแบบจำลอง SES เป็นแนวเส้นตรง เช่นเดียวกับในรูปแบบ SMA และรูปแบบการเดินแบบสุ่มโดยไม่มีการเติบโต อย่างไรก็ตามโปรดทราบว่าช่วงความเชื่อมั่นที่คำนวณโดย Statgraphics จะแตกต่างกันไปในรูปแบบที่ดูสมเหตุสมผลและมีความแคบกว่าช่วงความเชื่อมั่นสำหรับรูปแบบการเดินแบบสุ่ม แบบจำลอง SES อนุมานว่าชุดนี้ค่อนข้างจะคาดเดาได้มากกว่าแบบจำลองการเดินแบบสุ่ม แบบจำลอง SES เป็นกรณีพิเศษของรูปแบบ ARIMA ดังนั้นทฤษฎีสถิติของแบบจำลอง ARIMA จึงเป็นพื้นฐานที่ใช้ในการคำนวณระยะเวลาความเชื่อมั่นสำหรับแบบจำลอง SES โดยเฉพาะอย่างยิ่งแบบจำลอง SES คือแบบจำลอง ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งข้อ MA (1) เทอมและไม่มีระยะคงที่ หรือที่เรียกว่าโควต้า (0,1,1) โดยไม่มีค่าคงที่ ค่าสัมประสิทธิ์ MA (1) ในรูปแบบ ARIMA สอดคล้องกับจำนวน 1-945 ในแบบจำลอง SES ตัวอย่างเช่นถ้าคุณพอดีกับรูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่สำหรับชุดข้อมูลที่วิเคราะห์ที่นี่ค่าสัมประสิทธิ์ MA (1) โดยประมาณจะเท่ากับ 0.7029 ซึ่งเกือบจะเท่ากับ 0.2961 เป็นไปได้ที่จะเพิ่มสมมติฐานของแนวโน้มเชิงเส้นที่ไม่ใช่ศูนย์เป็นแบบ SES ในการทำเช่นนี้เพียงแค่ระบุรูปแบบ ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งและเทอม MA (1) ที่มีค่าคงที่นั่นคือ ARIMA (0,1,1) โดยมีค่าคงที่ การคาดการณ์ในระยะยาวจะมีแนวโน้มที่เท่ากับแนวโน้มเฉลี่ยที่สังเกตได้ในช่วงประมาณทั้งหมด คุณไม่สามารถดำเนินการนี้ควบคู่กับการปรับฤดูกาลได้เนื่องจากตัวเลือกการปรับฤดูกาลจะถูกปิดใช้งานเมื่อตั้งค่าประเภทของรูปแบบเป็น ARIMA อย่างไรก็ตามคุณสามารถเพิ่มแนวโน้มการชี้แจงในระยะยาวที่คงที่สำหรับแบบจำลองการทำให้เรียบแบบเลขแจงที่เรียบง่าย (โดยมีหรือไม่มีการปรับฤดูกาล) โดยใช้ตัวเลือกการปรับค่าเงินเฟ้อในขั้นตอนการคาดการณ์ อัตราการเติบโตของอัตราแลกเปลี่ยน (quotation) ในแต่ละช่วงเวลาสามารถประมาณได้จากค่าสัมประสิทธิ์ความชันในรูปแบบเส้นตรงที่พอดีกับข้อมูลร่วมกับการแปลงลอการิทึมตามธรรมชาติหรืออาจขึ้นอยู่กับข้อมูลอื่น ๆ ที่เป็นอิสระเกี่ยวกับแนวโน้มการเติบโตในระยะยาว . (กลับมาที่ด้านบนสุดของหน้า) Browns Linear (เช่น double) Exponential Smoothing โมเดล SMA และ SES สมมุติว่าไม่มีแนวโน้มใด ๆ ในข้อมูล (โดยปกติแล้วจะเป็นอย่างน้อยหรืออย่างน้อยก็ไม่เลวสำหรับ 1- การคาดการณ์ล่วงหน้าเมื่อข้อมูลมีเสียงดังมาก) และสามารถปรับเปลี่ยนเพื่อรวมแนวโน้มเชิงเส้นคงที่ดังที่แสดงไว้ข้างต้น สิ่งที่เกี่ยวกับแนวโน้มระยะสั้นหากชุดแสดงอัตราการเติบโตที่แตกต่างกันหรือรูปแบบตามวัฏจักรที่โดดเด่นอย่างชัดเจนต่อเสียงรบกวนและหากมีความจำเป็นต้องคาดการณ์มากกว่า 1 รอบระยะเวลาล่วงหน้าการประมาณแนวโน้มในท้องถิ่นอาจเป็นไปได้ ปัญหา แบบจำลองการทำให้เรียบเรียบง่ายสามารถสรุปเพื่อให้ได้รูปแบบการเรียบแบบเสวนาเชิงเส้น (LES) ซึ่งจะคำนวณการประมาณระดับท้องถิ่นและระดับแนวโน้ม รูปแบบแนวโน้มที่แตกต่างกันตามเวลาที่ง่ายที่สุดคือรูปแบบการเรียบแบบเสแสร้งแบบสีน้ำตาลของ Browns ซึ่งใช้ชุดการประมวลผลแบบเรียบสองแบบที่ต่างกันออกไปซึ่งมีศูนย์กลางอยู่ที่จุดต่างๆในเวลา สูตรพยากรณ์ขึ้นอยู่กับการอนุมานของเส้นผ่านทั้งสองศูนย์ (รุ่นที่ซับซ้อนมากขึ้นของรุ่นนี้ Holt8217s ถูกกล่าวถึงด้านล่าง) รูปแบบพีชคณิตของ Brown8217s เชิงเส้นแบบเรียบเช่นเดียวกับรูปแบบการเรียบง่ายชี้แจงสามารถแสดงในรูปแบบที่แตกต่างกัน แต่ที่เท่าเทียมกัน รูปแบบมาตรฐานของแบบจำลองนี้มักจะแสดงดังนี้: ให้ S หมายถึงชุดแบบเดี่ยวที่เรียบง่ายได้โดยใช้การเรียบง่ายแบบเลขยกตัวอย่างให้เป็นชุด Y นั่นคือค่าของ S ในช่วง t จะได้รับโดย: (จำได้ว่าภายใต้หลักการง่ายๆ exponential smoothing นี่คือการคาดการณ์ของ Y ที่ระยะเวลา t1) จากนั้นให้ Squot แสดงชุดที่มีการคูณทวีคูณขึ้นโดยใช้การเรียบแบบเลขแจงธรรมดา (ใช้แบบเดียวกัน 945) กับชุด S: สุดท้ายการคาดการณ์สำหรับ Y tk สำหรับ kgt1 ใด ๆ ให้โดย: ผลตอบแทนนี้ e 1 0 (เช่นโกงเล็กน้อยและให้การคาดการณ์ครั้งแรกเท่ากับการสังเกตครั้งแรกจริง) และ e 2 Y 2 8211 Y 1 หลังจากที่คาดการณ์จะถูกสร้างโดยใช้สมการข้างต้น ค่านี้จะให้ค่าพอดีกับสูตรตาม S และ S ถ้าค่าเริ่มต้นใช้ S 1 S 1 Y 1 รุ่นของรุ่นนี้ใช้ในหน้าถัดไปที่แสดงให้เห็นถึงการรวมกันของการเรียบแบบเสวนากับการปรับฤดูกาลตามฤดูกาล Holt8217s Linear Exponential Smoothing Brown8217s แบบจำลอง LES คำนวณการประมาณระดับท้องถิ่นและแนวโน้มโดยการให้ข้อมูลที่ราบรื่น แต่ข้อเท็จจริงที่ว่าด้วยพารามิเตอร์เรียบเพียงอย่างเดียวจะกำหนดข้อ จำกัด ของรูปแบบข้อมูลที่สามารถพอดีกับระดับและแนวโน้มได้ ไม่ได้รับอนุญาตให้เปลี่ยนแปลงในอัตราที่เป็นอิสระ แบบจำลอง LES ของ Holt8217s กล่าวถึงปัญหานี้ด้วยการรวมค่าคงที่ที่ราบเรียบสองค่าหนึ่งค่าสำหรับหนึ่งและหนึ่งสำหรับแนวโน้ม ทุกเวลา t เช่นเดียวกับในรุ่น Brown8217s มีการประมาณการ L t ของระดับท้องถิ่นและประมาณการ T t ของแนวโน้มในท้องถิ่น ที่นี่พวกเขาจะได้รับการคำนวณจากค่าของ Y ที่สังเกตได้ในเวลา t และการประมาณค่าก่อนหน้าของระดับและแนวโน้มโดยสมการสองตัวที่ใช้การอธิบายแบบเอกซ์โพเน็นเชียลให้เรียบขึ้น หากระดับและแนวโน้มโดยประมาณของเวลา t-1 คือ L t82091 และ T t-1 ตามลำดับจากนั้นคาดว่า Y tshy ที่จะทำในเวลา t-1 เท่ากับ L t-1 T t-1 เมื่อมีการสังเกตค่าจริงค่าประมาณระดับที่ปรับปรุงใหม่จะถูกคำนวณโดยการ interpolating ระหว่าง Y tshy และการคาดการณ์ L t-1 T t-1 โดยใช้น้ำหนักของ 945 และ 1-945 การเปลี่ยนแปลงระดับโดยประมาณ, คือ L t 8209 L t82091 สามารถตีความได้ว่าเป็นสัญญาณรบกวนของแนวโน้มในเวลา t การประมาณการแนวโน้มของแนวโน้มจะถูกคำนวณโดยการ interpolating ระหว่าง L t 8209 L t82091 และประมาณการก่อนหน้าของแนวโน้ม T t-1 โดยใช้น้ำหนักของ 946 และ 1-946: การตีความค่าคงที่การทรงตัวของกระแส 946 มีความคล้ายคลึงกับค่าคงที่การปรับให้เรียบระดับ 945 โมเดลที่มีค่าน้อย 946 ถือว่าแนวโน้มมีการเปลี่ยนแปลงเพียงอย่างช้าๆเมื่อเวลาผ่านไป ใหญ่กว่า 946 สมมติว่ามีการเปลี่ยนแปลงอย่างรวดเร็ว แบบจำลองที่มีขนาดใหญ่ 946 เชื่อว่าในอนาคตอันใกล้นี้มีความไม่แน่นอนมากเนื่องจากข้อผิดพลาดในการคาดการณ์แนวโน้มกลายเป็นสิ่งสำคัญมากเมื่อคาดการณ์ล่วงหน้ามากกว่าหนึ่งช่วง (กลับไปด้านบนสุดของหน้า) ค่าคงที่ที่ราบเรียบ 945 และ 946 สามารถประมาณได้ตามปกติโดยลดข้อผิดพลาดของค่าเฉลี่ยของการคาดการณ์ล่วงหน้า 1 ขั้นตอน เมื่อทำใน Statgraphics ค่าประมาณนี้จะเท่ากับ 945 0.3048 และ 946 0.008 ค่าที่น้อยมากของ 946 หมายความว่ารูปแบบสมมติว่ามีการเปลี่ยนแปลงน้อยมากในแนวโน้มจากระยะหนึ่งไปยังอีกรุ่นหนึ่งดังนั้นโดยทั่วไปโมเดลนี้กำลังพยายามประมาณแนวโน้มในระยะยาว โดยการเปรียบเทียบกับความคิดของอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประมาณระดับท้องถิ่นของชุดข้อมูลอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มในท้องถิ่นเป็นสัดส่วนกับ 1 946 แม้ว่าจะไม่เท่ากันก็ตาม . ในกรณีนี้ที่กลายเป็น 10.006 125 นี่เป็นตัวเลขที่แม่นยำมากที่สุดเท่าที่ความถูกต้องของค่าประมาณ 946 isn8217t จริง ๆ 3 ตำแหน่งทศนิยม แต่มันก็เป็นเรื่องธรรมดาของขนาดตามตัวอย่างขนาด 100 ดังนั้น รุ่นนี้มีค่าเฉลี่ยมากกว่าค่อนข้างมากของประวัติศาสตร์ในการประมาณแนวโน้ม พล็อตการคาดการณ์ด้านล่างแสดงให้เห็นว่าโมเดล LES ประมาณการแนวโน้มท้องถิ่นในวงกว้างขึ้นเล็กน้อยที่ส่วนท้ายของชุดข้อมูลมากกว่าแนวโน้มที่คงที่ในแบบจำลอง SEStrend นอกจากนี้ค่าประมาณของ 945 เกือบจะเหมือนกันกับที่ได้จากการปรับรุ่น SES ที่มีหรือไม่มีแนวโน้มดังนั้นเกือบจะเป็นแบบเดียวกัน ตอนนี้ดูเหมือนว่าการคาดการณ์ที่สมเหตุสมผลสำหรับโมเดลที่ควรจะประเมินแนวโน้มในระดับท้องถิ่นดูเหมือนว่าแนวโน้มในท้องถิ่นมีแนวโน้มลดลงในตอนท้ายของชุดข้อมูลสิ่งที่เกิดขึ้นพารามิเตอร์ของรุ่นนี้ ได้รับการประเมินโดยการลดข้อผิดพลาดสี่เหลี่ยมของการคาดการณ์ล่วงหน้า 1 ขั้นตอนไม่ใช่การคาดการณ์ในระยะยาวซึ่งในกรณีนี้แนวโน้มไม่ได้สร้างความแตกต่างมากนัก หากสิ่งที่คุณกำลังมองหาคือข้อผิดพลาด 1 ขั้นตอนคุณจะไม่เห็นภาพใหญ่ของแนวโน้มในช่วง 10 หรือ 20 ครั้ง เพื่อให้โมเดลนี้สอดคล้องกับการคาดการณ์ข้อมูลลูกตาของเรามากขึ้นเราจึงสามารถปรับค่าคงที่การปรับให้เรียบตามแนวโน้มเพื่อให้ใช้พื้นฐานที่สั้นกว่าสำหรับการประมาณแนวโน้ม ตัวอย่างเช่นถ้าเราเลือกที่จะตั้งค่า 946 0.1 แล้วอายุเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มท้องถิ่นคือ 10 ช่วงเวลาซึ่งหมายความว่าเรามีค่าเฉลี่ยของแนวโน้มมากกว่าช่วงเวลา 20 ช่วงที่ผ่านมา Here8217s พล็อตการคาดการณ์มีลักษณะอย่างไรถ้าเราตั้งค่า 946 0.1 ขณะเก็บรักษา 945 0.3 นี่ดูเหมาะสมสำหรับชุดนี้แม้ว่าจะเป็นแนวโน้มที่จะคาดการณ์แนวโน้มดังกล่าวได้ไม่น้อยกว่า 10 งวดในอนาคต สิ่งที่เกี่ยวกับสถิติข้อผิดพลาดนี่คือการเปรียบเทียบรูปแบบสำหรับสองรุ่นที่แสดงข้างต้นเช่นเดียวกับสามรุ่น SES ค่าที่เหมาะสมที่สุดคือ 945 สำหรับรุ่น SES มีค่าประมาณ 0.3 แต่ผลการค้นหาที่คล้ายกัน (มีการตอบสนองน้อยหรือน้อยตามลำดับ) จะได้รับค่า 0.5 และ 0.2 (A) Holts linear exp. การให้ความนุ่มนวลด้วย alpha 0.3048 และ beta 0.008 (B) Holts linear exp. การทำให้เรียบด้วยเอ็กซ์พี 0.3 และเบต้า 0.1 (C) การเพิ่มความเรียบง่ายด้วยการอธิบายด้วย alpha 0.5 (D) การทำให้เรียบอย่างง่ายด้วยเอ็กซ์โป 0.3 (E) การเรียบง่ายด้วยเลขแจงอัลฟา 0.2 สถิติของพวกเขาใกล้เคียงกันมากดังนั้นเราจึงสามารถเลือกได้บนพื้นฐาน ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 1 ขั้นตอนภายในตัวอย่างข้อมูล เราต้องกลับไปพิจารณาเรื่องอื่น ๆ ถ้าเราเชื่อว่าการคาดการณ์แนวโน้มในปัจจุบันเกี่ยวกับสิ่งที่เกิดขึ้นในระยะเวลา 20 ปีที่ผ่านมาเราสามารถสร้างกรณีสำหรับโมเดล LES ด้วย 945 0.3 และ 946 0.1 ได้ ถ้าเราต้องการที่จะไม่เชื่อเรื่องว่ามีแนวโน้มในระดับท้องถิ่นแบบใดแบบหนึ่งของ SES อาจอธิบายได้ง่ายกว่านี้และยังให้การคาดการณ์ระดับกลางของถนนต่อไปในอีก 5 หรือ 10 งวดต่อไป ชนิดของแนวโน้มการอนุมานที่ดีที่สุดคือแนวนอนหรือเส้นตรงหลักฐานเชิงประจักษ์ชี้ให้เห็นว่าหากข้อมูลได้รับการปรับแล้ว (ถ้าจำเป็น) สำหรับอัตราเงินเฟ้อแล้วก็อาจจะไม่ระมัดระวังในการคาดการณ์ระยะสั้นในเชิงเส้น แนวโน้มที่ไกลมากในอนาคต แนวโน้มที่เห็นได้ชัดในวันนี้อาจลดลงในอนาคตอันเนื่องมาจากสาเหตุที่แตกต่างกันเช่นความล้าสมัยของผลิตภัณฑ์การแข่งขันที่เพิ่มขึ้นและการชะลอตัวของวัฏจักรหรือการปรับตัวในอุตสาหกรรม ด้วยเหตุนี้การเรียบอย่างง่ายจึงมักจะทำให้ได้ตัวอย่างที่ดีกว่าที่คาดคิดไว้ได้แม้จะมีการอนุมานแนวโน้มในแนวนอน การปรับเปลี่ยนรูปแบบการลดลงของรูปแบบการเพิ่มประสิทธิภาพเชิงเส้นแบบเชิงเส้นมักใช้ในการปฏิบัติเพื่อแนะนำโน้ตของอนุรักษนิยมในการคาดการณ์แนวโน้ม โมเดล LES ที่มีแนวโน้มลดลงสามารถใช้เป็นกรณีพิเศษของรูปแบบ ARIMA โดยเฉพาะ ARIMA (1,1,2) เป็นไปได้ในการคำนวณช่วงความเชื่อมั่นรอบการคาดการณ์ในระยะยาวที่ผลิตโดยแบบจำลองการทำให้เรียบโดยพิจารณาเป็นกรณีพิเศษของรูปแบบ ARIMA ความกว้างของช่วงความเชื่อมั่นขึ้นอยู่กับ (i) ข้อผิดพลาด RMS ของโมเดล (ii) ประเภทของการปรับให้เรียบ (แบบง่ายหรือแบบเส้นตรง) (iii) ค่า (s) ของคงที่ราบเรียบ (s) และ (iv) จำนวนรอบระยะเวลาที่คุณคาดการณ์ โดยทั่วไปช่วงเวลาจะกระจายออกไปได้เร็วกว่าเมื่อ 945 มีขนาดใหญ่ขึ้นในรูปแบบ SES และแพร่กระจายได้เร็วกว่ามากเมื่อใช้เส้นตรงมากกว่าการเรียบแบบเรียบ หัวข้อนี้จะกล่าวถึงต่อไปในส่วนรูปแบบ ARIMA ของบันทึกย่อ (กลับไปที่ด้านบนของหน้า.)
CFD- ซื้อขาย หุ้น
ที่ดีที่สุด ง่าย แลกเปลี่ยน ซื้อขาย ระบบ