ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ ผันผวน ใน Excel

ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ ผันผวน ใน Excel

15   สัปดาห์ เฉลี่ยเคลื่อนที่
Forexpros   สกุลเงิน ดอลลาร์สหรัฐ - INR   แผนภูมิ
Forex- ไม่ใช่ ทาสี วงจร - ระบุ - ตัวบ่งชี้


CL- หุ้น ตัวเลือก Binary ตัวเลือก ฝาก วิธีการ 5 นาที ไบนารี ตัวเลือก กลยุทธ์ Forex- 1m กลยุทธ์ ที่ดีที่สุด ง่ายต่อ การเคลื่อนย้าย ค่าเฉลี่ย การใช้งาน Forex- หมายเลข ฟิลิปปินส์

วิธีการคำนวณค่าเฉลี่ยถ่วงน้ำหนักใน Excel ที่ใช้การคำนวณข้อมูล Excel อย่างราบรื่นสำหรับ Dummies, Edition ครั้งที่ 2 เครื่องมือ Exponential Smoothing ใน Excel คำนวณค่าเฉลี่ยเคลื่อนที่ อย่างไรก็ตามการคำนวณความถ่วงน้ำหนักแบบเลขยกกำลังให้ค่าที่รวมอยู่ในการคำนวณค่าเฉลี่ยเคลื่อนที่เพื่อให้ค่าล่าสุดมีผลมากขึ้นกับการคำนวณโดยเฉลี่ยและค่าเดิมมีผลน้อยกว่า การถ่วงน้ำหนักนี้ทำได้ผ่านค่าคงที่ที่ราบเรียบ เพื่อแสดงให้เห็นว่าเครื่องมือ Smoothing แบบ Exponential ทำงานอย่างไรสมมติว่า you8217re อีกครั้งกำลังมองหาข้อมูลอุณหภูมิเฉลี่ยรายวัน ในการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักโดยใช้การคำนวณหากำไรให้เรียบโปรดทำตามขั้นตอนต่อไปนี้: เมื่อต้องการคำนวณค่าเฉลี่ยเคลื่อนที่ที่ได้รับการทำความสะอาดอย่างละเอียดให้คลิกที่ปุ่มคำสั่ง Data data analysis ของข้อมูล tab8217s เมื่อ Excel แสดงไดอะล็อกบ็อกซ์การวิเคราะห์ข้อมูลเลือกรายการ Smoning แบบ Exponential จากรายการจากนั้นคลิก OK Excel จะแสดงไดอะล็อกบ็อกซ์ Exponential Smoothing ระบุข้อมูล หากต้องการระบุข้อมูลที่คุณต้องการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนไหวที่ชี้แจงให้คลิกที่กล่องข้อความ Input Range จากนั้นระบุช่วงการป้อนข้อมูลโดยพิมพ์ที่อยู่ช่วงเวิร์กชีทหรือเลือกช่วงของแผ่นงาน หากช่วงอินพุทของคุณมีป้ายข้อความเพื่อระบุหรืออธิบายข้อมูลของคุณให้เลือกช่องทำเครื่องหมายป้ายข้อความ ให้ค่าคงที่ที่ราบเรียบ ป้อนค่าคงที่ที่ราบเรียบในกล่องข้อความ Damping Factor แฟ้มวิธีใช้ Excel แสดงว่าคุณใช้ค่าคงที่ที่ราบเรียบระหว่าง 0.2 และ 0.3 สันนิษฐานได้ว่าอย่างไรก็ตามหาก you8217 ใช้เครื่องมือนี้คุณมีความคิดของคุณเองเกี่ยวกับค่าคงที่ของการทำให้เรียบที่ถูกต้องคือ (หากคุณไม่เข้าใจเกี่ยวกับค่าคงที่ที่ราบเรียบบางทีคุณอาจไม่ควรใช้เครื่องมือนี้) บอก Excel ว่าจะใส่ข้อมูลค่าเฉลี่ยเคลื่อนที่แบบเรียบ ใช้กรอบข้อความ Output Range เพื่อระบุช่วงเวิร์กชีตที่คุณต้องการวางข้อมูลค่าเฉลี่ยเคลื่อนที่ ตัวอย่างเช่นในตัวอย่างแผ่นงานคุณวางข้อมูลค่าเฉลี่ยเคลื่อนที่ลงในช่วงเวิร์กชีท B2: B10 (ไม่บังคับ) แสดงข้อมูลที่เรียบขึ้น เมื่อต้องการแผนภูมิข้อมูลที่ได้รับการจัดเรียงอย่างรวดเร็วให้เลือกช่องทำเครื่องหมายแผนภูมิเอาท์พุท (ไม่บังคับ) ระบุว่าคุณต้องการคำนวณข้อมูลข้อผิดพลาดมาตรฐาน หากต้องการคำนวณข้อผิดพลาดมาตรฐานให้เลือกช่องทำเครื่องหมายข้อผิดพลาดมาตรฐาน Excel วางค่าความผิดพลาดมาตรฐานไว้ข้างๆค่าเฉลี่ยเคลื่อนที่แบบเรียบ หลังจากที่คุณระบุว่าต้องการย้ายข้อมูลเฉลี่ยที่ต้องการและตำแหน่งที่ต้องการวางไว้คลิกตกลง Excel คำนวณข้อมูลค่าเฉลี่ยเคลื่อนที่คำนวณความผันผวนทางประวัติศาสตร์โดยใช้ EWMA ความผันผวนเป็นมาตรการวัดความเสี่ยงที่ใช้บ่อยที่สุด ความผันผวนในแง่นี้อาจเป็นความผันผวนทางประวัติศาสตร์ (สังเกตจากข้อมูลที่ผ่านมา) หรืออาจบ่งบอกถึงความผันผวน (สังเกตจากราคาตลาดของเครื่องมือทางการเงิน) ความผันผวนทางประวัติศาสตร์สามารถคำนวณได้สามวิธี ได้แก่ ความผันผวนแบบง่าย, การถ่วงน้ำหนักแบบสมมุติฐาน Average (EWMA) GARCH หนึ่งในข้อได้เปรียบที่สำคัญของ EWMA คือให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุดในขณะที่คำนวณผลตอบแทน ในบทความนี้เราจะดูวิธีคำนวณความผันผวนโดยใช้ EWMA เราสามารถคำนวณผลตอบแทน lognormal รายวันโดยใช้สูตร ln (P i P i -1) โดยที่ P หมายถึงแต่ละรายการ วันปิดราคาหุ้น เราจำเป็นต้องใช้บันทึกธรรมชาติเพราะเราต้องการผลตอบแทนที่จะประกอบกันอย่างต่อเนื่อง ขณะนี้เราจะได้รับผลตอบแทนรายวันสำหรับชุดราคาทั้งหมด ขั้นตอนที่ 2: สแควร์ผลตอบแทนขั้นตอนต่อไปคือการใช้สแควร์ของผลตอบแทนที่ยาวนาน นี่คือการคำนวณความแปรปรวนหรือความผันแปรอย่างง่ายที่แสดงโดยสูตรต่อไปนี้: ที่นี่ u แสดงถึงผลตอบแทนและ m แสดงจำนวนวัน ขั้นตอนที่ 3: กำหนดน้ำหนักกำหนดน้ำหนักให้ผลตอบแทนล่าสุดมีน้ำหนักมากขึ้นและผลตอบแทนที่เก่ากว่ามีน้ำหนักน้อยลง สำหรับเรื่องนี้เราต้องใช้ปัจจัยที่เรียกว่า Lambda () ซึ่งเป็นค่าคงที่ที่ราบเรียบหรือค่าคงที่ (1-0.94) 6 น้ำหนักที่สองจะเท่ากับ 60.94 5.64 และอื่น ๆ โดยน้ำหนักจะมีค่าเป็น (1) 0. Lambda ต้องมีค่าน้อยกว่า 1. เมตริกความเสี่ยงใช้ lambda 94 น้ำหนักแรกจะเท่ากับ ใน EWMA น้ำหนักทั้งหมดจะรวมเป็น 1 แต่จะลดลงด้วยอัตราส่วนคงที่ของ ขั้นที่ 4: ผลคูณคูณด้วยน้ำหนัก 5 ทำยอดรวมของ R 2 w นี่คือความแปรปรวนสุดท้ายของ EWMA ความผันผวนจะเป็นรากที่สองของความแปรปรวน ภาพหน้าจอต่อไปนี้แสดงการคำนวณ ตัวอย่างข้างต้นที่เราเห็นคือแนวทางที่ RiskMetrics อธิบายไว้ รูปแบบทั่วไปของ EWMA สามารถแสดงเป็นสูตร recursive ต่อไปนี้: การสำรวจความผันผวนเฉลี่ยถ่วงน้ำหนักที่ถ่วงน้ำหนักเชิงตัวเลขเป็นการวัดความเสี่ยงที่พบบ่อยที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่ได้รับเมื่อเร็ว ๆ นี้มีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Google มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตเพื่อให้คุณสามารถทดลองกับความไว) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลเพิ่มเติม แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะถูกเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (หากต้องการดูบทแนะนำเกี่ยวกับภาพยนตร์เกี่ยวกับหัวข้อนี้ไปที่ Bionic Turtle) วัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการโดยเฉพาะอย่างยิ่งกับการเปลี่ยนแปลงราคาของผลิตภัณฑ์ ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณโดยการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ คำสั่งหยุดการสั่งซื้อจะ รอบการจัดหาเงินทุนที่นักลงทุนซื้อหุ้นจาก บริษัท ในราคาที่ต่ำกว่าการประเมินมูลค่าวางไว้ ทฤษฎีเศรษฐศาสตร์ของการใช้จ่ายทั้งหมดในระบบเศรษฐกิจและผลกระทบต่อผลผลิตและอัตราเงินเฟ้อ เศรษฐศาสตร์ของเคนส์ได้รับการพัฒนา
Forex -usd -jpy   อภิปราย
Forex   สัญญาณ ในขณะนี้