Arima - VS- เฉลี่ยเคลื่อนที่

Arima - VS- เฉลี่ยเคลื่อนที่

พื้นฐาน การวิเคราะห์ ของ อัตราแลกเปลี่ยน ซื้อขาย หนังสือ
Forex -on- มือถือ
EURUSD - สด แผนภูมิ   forexpros


การคำนวณ ของ เฉลี่ยเคลื่อนที่ บรรจบ - แตกต่าง การเงิน วิศวกรรม แลกเปลี่ยน Forex- กองทัพ ฟอรั่ม ที่ดีที่สุด แลกเปลี่ยน การฝึกอบรม ลอนดอน 2 เฉลี่ยเคลื่อนที่ สัญญาณ - MT4 - ตัวบ่งชี้ Bollinger วง - contra แนวโน้ม

ARIMA (p, d, q) สมการพยากรณ์: แบบจำลอง ARIMA เป็นทฤษฎีในชั้นเรียนทั่วไปของแบบจำลองสำหรับการคาดการณ์ชุดเวลาซึ่งสามารถทำให้เป็น 8220stationary8221 โดย differencing (ถ้าจำเป็น) อาจ ร่วมกับการแปลงที่ไม่ใช่เชิงเส้นเช่นการบันทึกหรือการลดน้ำหนัก (ถ้าจำเป็น) ตัวแปรสุ่มที่เป็นชุดเวลาจะหยุดนิ่งถ้าคุณสมบัติทางสถิติมีค่าคงที่ตลอดเวลา ชุดเครื่องเขียนมีแนวโน้มไม่มีรูปแบบแตกต่างกันไปโดยเฉลี่ยมีความกว้างคงที่และเลื้อยตามแบบที่สม่ำเสมอ กล่าวคือรูปแบบเวลาแบบสุ่มระยะสั้น ๆ มีลักษณะเหมือนกันในเชิงสถิติ เงื่อนไขหลังหมายความว่า autocorrelations (correlations กับความเบี่ยงเบนก่อนจากค่าเฉลี่ย) คงที่ตลอดเวลาหรือเทียบเท่าที่สเปกตรัมพลังงานคงที่ตลอดเวลา ตัวแปรสุ่มของแบบฟอร์มนี้สามารถดูได้ (ตามปกติ) เป็นสัญญาณและเสียงรวมกันและสัญญาณ (ถ้ามีปรากฏชัด) อาจเป็นรูปแบบการพลิกกลับค่าเฉลี่ยอย่างรวดเร็วหรือช้าหรือการสั่นของไซน์โซลาร์หรือการสลับสัญญาณอย่างรวดเร็ว และอาจมีส่วนประกอบตามฤดูกาล แบบจำลอง ARIMA สามารถดูได้ว่าเป็น 8220filter8221 ที่พยายามแยกสัญญาณออกจากเสียงและสัญญาณจะถูกอนุมานในอนาคตเพื่อให้ได้การคาดการณ์ สมการพยากรณ์ ARIMA สำหรับชุดเวลาแบบคงที่คือสมการเชิงเส้น (สมการถดถอย) ซึ่งตัวทำนายประกอบด้วยความล่าช้าของตัวแปรขึ้นอยู่กับและความล่าช้าของข้อผิดพลาดในการคาดการณ์ นั่นคือค่าที่คาดการณ์ของ Y คงที่และเป็นผลรวมถ่วงน้ำหนักของหนึ่งหรือมากกว่าค่าล่าสุดของ Y และหรือผลรวมถ่วงน้ำหนักของค่าข้อผิดพลาดล่าสุดหนึ่งค่าหรือมากกว่า ถ้าตัวทำนายประกอบด้วยค่า lag ที่ต่ำสุดของ Y มันเป็นโมเดล autoregressive บริสุทธิ์ (8220 self-regressed8221) ซึ่งเป็นเพียงกรณีพิเศษของรูปแบบการถดถอยและสามารถใช้กับซอฟต์แวร์การถดถอยแบบมาตรฐาน ตัวอย่างเช่นโมเดล autoregressive (8220AR (1) 8221) คำสั่งแรกสำหรับ Y เป็นรูปแบบการถดถอยแบบง่ายซึ่งตัวแปรอิสระมีเพียง Y lagged โดยหนึ่งช่วงเวลา (LAG (Y, 1) ใน Statgraphics หรือ YLAG1 ใน RegressIt) หากตัวทำนายบางตัวมีข้อผิดพลาดข้อผิดพลาดโมเดล ARIMA ไม่ใช่แบบจำลองการถดถอยเชิงเส้นเพราะไม่มีวิธีใดที่จะระบุข้อผิดพลาด 8222last period8217s error8221 เป็นตัวแปรอิสระ: ข้อผิดพลาดต้องคำนวณเป็นระยะ ๆ เป็นระยะ ๆ เมื่อโมเดลพอดีกับข้อมูล จากมุมมองด้านเทคนิคปัญหาเกี่ยวกับการใช้ข้อผิดพลาดที่ล่าช้าเป็นตัวพยากรณ์คือการคาดการณ์ model8217s ไม่ใช่หน้าที่เชิงเส้นของค่าสัมประสิทธิ์ แม้ว่าจะเป็นฟังก์ชันเชิงเส้นของข้อมูลที่ผ่านมา ดังนั้นค่าสัมประสิทธิ์ในแบบจำลอง ARIMA ที่มีข้อผิดพลาดที่ล้าหลังต้องถูกประมาณโดยวิธีการเพิ่มประสิทธิภาพแบบไม่เชิงเส้น (8220hill-climbing8221) แทนที่จะใช้เพียงการแก้สมการของสมการ ตัวย่อ ARIMA ย่อมาจาก Auto-Regressive Integrated Moving Average ความล่าช้าของชุดเครื่องเขียนในสมการพยากรณ์ถูกเรียกว่า quotautoregressivequot terms ความล่าช้าของข้อผิดพลาดในการคาดการณ์จะเรียกว่า quotmoving averagequot terms และชุดข้อมูลเวลาที่จะต้องมีความแตกต่างกันไปเพื่อที่จะทำให้ stationary ถูกกล่าวว่าเป็นชุด stationary ที่ไม่มีการเปลี่ยนแปลง โมเดลแบบสุ่มและแบบสุ่มแนวโน้มโมเดลอัตถิภาวนิยมและแบบจำลองการทำให้เรียบเป็นแบบเอกเทศเป็นกรณีพิเศษของแบบจำลอง ARIMA (p, d, q) quotario ซึ่งโดย: p คือจํานวนเงื่อนไขเชิงอัตรกรรม (autoregressive terms), d คือจํานวนความแตกต่างที่ไม่จำเป็นสำหรับ stationarity และ q คือจํานวนข้อผิดพลาดในการคาดการณ์ที่ล้าหลังใน สมการทำนาย สมการพยากรณ์ถูกสร้างขึ้นดังนี้ อันดับแรกให้ y แสดงความแตกต่าง d ของ Y ซึ่งหมายถึง: โปรดทราบว่าความแตกต่างที่สองของ Y (กรณี d2) ไม่ใช่ความแตกต่างจาก 2 ช่วงก่อนหน้า ค่อนข้างแตกต่างแรกของความแตกต่าง ซึ่งเป็นอนาล็อกแบบไม่ต่อเนื่องของอนุพันธ์ลำดับที่สองนั่นคือการเร่งความเร็วในท้องถิ่นของซีรีส์มากกว่าแนวโน้มในท้องถิ่น ในแง่ของ y สมการพยากรณ์ทั่วไปคือที่นี่มีการกำหนดค่าพารามิเตอร์เฉลี่ยเคลื่อนที่ (9528217s) เพื่อให้สัญญาณของพวกเขามีค่าเป็นลบในสมการดังต่อไปนี้ตามข้อเสนอของ Box and Jenkins ผู้เขียนบางคนและซอฟต์แวร์ (รวมถึงภาษาการเขียนโปรแกรม R) กำหนดไฟล์เหล่านั้นเพื่อให้มีเครื่องหมายบวกแทน เมื่อจำนวนจริงถูกเสียบเข้ากับสมการไม่มีความคลุมเครือ แต่สำคัญมากที่ทราบว่าการประชุมซอฟต์แวร์ของคุณใช้เมื่อคุณอ่านผลลัพธ์ บ่อยครั้งที่พารามิเตอร์จะแสดงด้วย AR (1), AR (2), 8230 และ MA (1), MA (2), 8230 เป็นต้นเพื่อระบุรูปแบบ ARIMA ที่เหมาะสมสำหรับ Y คุณจะเริ่มต้นด้วยการกำหนดลำดับของ differencing (d) จำเป็นต้องจัดลำดับชุดและลบคุณลักษณะขั้นต้นของฤดูกาลอาจเป็นผลมาจากการเปลี่ยนแปลงความแปรปรวน - เสถียรภาพเช่นการบันทึกหรือการลดราคา ถ้าคุณหยุดอยู่ที่จุดนี้และคาดการณ์ว่าซีรี่ส์ที่แตกต่างกันคือค่าคงที่คุณได้ติดตั้งแบบสุ่มหรือแบบจำลองแนวโน้มแบบสุ่มเท่านั้น อย่างไรก็ตามชุดเครื่องเขียนอาจมีข้อผิดพลาดที่อาจเกิดขึ้นได้เองซึ่งหมายความว่าคำจำกัดความของ AR บางข้อ (p 8805 1) และบางคำจำนวน MA (q 8805 1) ยังจำเป็นในสมการพยากรณ์ ขั้นตอนการกำหนดค่าของ p, d และ q ที่ดีที่สุดสำหรับชุดเวลาที่กำหนดจะกล่าวถึงในส่วนถัดไปของบันทึกย่อ (ซึ่งลิงก์อยู่ที่ด้านบนของหน้านี้) แต่เป็นการแสดงตัวอย่างบางส่วนของประเภท ของแบบจำลอง ARIMA แบบไม่ใช้เชิงเส้นที่มักพบคือด้านล่าง ARIMA (1,0,0) แบบจำลองอัตถดถอยอันดับแรก: ถ้าซีรี่ส์มีตำแหน่งนิ่งและสัมพันธ์กันอาจเป็นไปได้ว่าเป็นค่าหลายค่าของตนเองก่อนหน้าบวกค่าคงที่ สมการพยากรณ์ในกรณีนี้คือ 8230 ซึ่งเป็น Y ที่ถดถอยลงบนตัวของมันเองที่ล้าหลังไปหนึ่งช่วงเวลา นี่คือโมเดล 8220ARIMA (1,0,0) คงที่ 8221 ถ้าค่าเฉลี่ยของ Y เป็นศูนย์จะไม่มีการรวมค่าคงที่ ถ้าค่าสัมประสิทธิ์ความลาดชัน 981 1 เป็นค่าบวกและน้อยกว่า 1 ในขนาด (ต้องมีขนาดน้อยกว่า 1 ในกรณีที่ Y อยู่นิ่ง) รูปแบบนี้อธิบายถึงพฤติกรรมการคืนค่าเฉลี่ยซึ่งคาดว่าจะมีการคาดการณ์มูลค่า 8282 ของช่วงถัดไปเป็น 981 1 เท่าตาม ห่างไกลจากค่าเฉลี่ยเป็นค่า period8217s นี้ ถ้า 981 1 เป็นค่าลบจะคาดการณ์พฤติกรรมการคืนค่าเฉลี่ยด้วยการสลับสัญญาณซึ่งก็คือคาดการณ์ว่า Y จะอยู่ต่ำกว่าระยะเวลาถัดไปหากอยู่เหนือค่าเฉลี่ยในช่วงเวลานี้ ในแบบจำลองอัตถิภาวนิยมที่สอง (ARIMA (2,0,0)) จะมีระยะ Y t-2 อยู่ด้านขวาเช่นกันและอื่น ๆ ขึ้นอยู่กับสัญญาณและ magnitudes ของค่าสัมประสิทธิ์แบบ ARIMA (2,0,0) สามารถอธิบายระบบที่มีการพลิกกลับค่าเฉลี่ยที่เกิดขึ้นในรูปแบบการสั่น sinusoidally เช่นการเคลื่อนไหวของมวลในฤดูใบไม้ผลิที่อยู่ภายใต้แรงกระแทกแบบสุ่ม . ARIMA (0, 0) การเดินแบบสุ่ม: ถ้าชุด Y ไม่อยู่นิ่งแบบจำลองที่ง่ายที่สุดที่เป็นไปได้คือรูปแบบการเดินแบบสุ่มซึ่งถือได้ว่าเป็นรูปแบบ AR (1) ที่มีข้อ จำกัด ในการกำหนดอัตลักษณ์เชิงอัตรกรรม ค่าสัมประสิทธิ์เท่ากับ 1 คือชุดที่มีการพลิกกลับหมายถึงช้าอย่างไม่หยุดนิ่ง สมการทำนายสำหรับแบบจำลองนี้สามารถเขียนได้ว่า: โดยที่ระยะคงที่คือการเปลี่ยนแปลงระยะเวลาเฉลี่ยเป็นระยะ ๆ (เช่นการลอยตัวในระยะยาว) ใน Y โมเดลนี้สามารถใช้เป็นแบบจำลองการถดถอยแบบไม่มีการสกัดกั้นซึ่ง ความแตกต่างแรกของ Y คือตัวแปรอิสระ เนื่องจากมีเพียงความแตกต่างที่ไม่มีความแตกต่างกันและเป็นระยะคงที่จึงถูกจัดเป็นแบบ quotARIMA (0,1,0) ด้วย constant.quot แบบ random-walk-without -drift จะเป็น ARIMA (0.1, 0) โดยไม่มีค่าคงที่ ARIMA (1,1,0) differenced แบบจำลอง autoregressive ลำดับแรก: ถ้าข้อผิดพลาดของรูปแบบการเดินแบบสุ่มเป็น autocorrelated บางทีปัญหาสามารถแก้ไขได้โดยการเพิ่มหนึ่งล่าช้าของตัวแปรขึ้นอยู่กับสมการทำนาย - -ie โดยการถอยกลับความแตกต่างแรกของ Y บนตัวเองล้าหลังโดยระยะเวลาหนึ่ง นี่จะเป็นสมการทำนายต่อไปนี้: ซึ่งสามารถจัดเรียงใหม่ได้นี่คือแบบจำลองอัตถิภาวนิยมอันดับแรกที่มีลำดับความแตกต่างอย่างไม่มีเงื่อนไขและลำดับคงที่อย่างใดอย่างหนึ่ง แบบจำลอง ARIMA (1,1,0) ARIMA (0,1,1) โดยไม่มีการเรียบแบบ exponential เรียบง่ายอย่างสม่ำเสมอ: อีกวิธีหนึ่งสำหรับการแก้ไขข้อผิดพลาด autocorrelated ในแบบจำลองการเดินแบบสุ่มได้รับการแนะนำโดยใช้แบบเรียบง่าย จำได้ว่าในบางช่วงเวลาที่ไม่ต่อเนื่อง (เช่นคนที่แสดงความผันผวนที่มีเสียงดังรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ) รูปแบบการเดินแบบสุ่มไม่ทำงานและค่าเฉลี่ยที่เคลื่อนไหวอยู่ในอดีต กล่าวอีกนัยหนึ่งแทนที่จะใช้การสังเกตล่าสุดเป็นคาดการณ์การสังเกตครั้งต่อไปจะเป็นการดีกว่าที่จะใช้ค่าเฉลี่ยของข้อสังเกตสุดท้ายไม่กี่ข้อเพื่อกรองสัญญาณรบกวนและประมาณค่าเฉลี่ยของท้องถิ่นอย่างแม่นยำมากขึ้น แบบจำลองการทำให้เรียบแบบเรียบง่ายใช้ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบพหุคูณของค่าที่ผ่านมาเพื่อให้ได้ผลลัพธ์นี้ สมการทำนายสำหรับแบบเรียบง่ายชี้แจงสามารถเขียนในรูปแบบที่เท่าเทียมทางคณิตศาสตร์ หนึ่งในนั้นคือแบบฟอร์ม 8220error correction8221 ที่เรียกว่า 8220error ซึ่งเป็นที่คาดการณ์ก่อนหน้านี้ได้รับการปรับเปลี่ยนไปในทิศทางของข้อผิดพลาดที่เกิดขึ้นเนื่องจาก e t-1 Y t-1 - 374 t-1 ตามนิยามนี้สามารถเขียนใหม่ได้ : ซึ่งเป็นสมการพยากรณ์ ARIMA (0,1,1) โดยไม่ใช้ค่าคงที่กับ 952 1 1 - 945 ซึ่งหมายความว่าคุณสามารถใส่ข้อมูลการเรียบง่ายที่ชี้แจงได้โดยระบุว่าเป็นแบบ ARIMA (0,1,1) โดยไม่มี ค่าคงที่และค่าสัมประสิทธิ์ของค่าสัมประสิทธิ์ (1) โดยประมาณเท่ากับ 1-alpha ในสูตร SES จำได้ว่าในรูปแบบ SES อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์ล่วงหน้า 1 รอบคือ 1 945 หมายความว่าพวกเขาจะมีแนวโน้มที่จะล่าช้าหลังแนวโน้มหรือจุดหักเหตามระยะเวลาประมาณ 1 945 เป็นไปตามที่อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์ล่วงหน้า 1 รอบของรูปแบบ ARIMA (0,1,1) - ไม่ใช้แบบคงที่คือ 1 (1 - 952 1) ดังนั้นตัวอย่างเช่นถ้า 952 1 0.8 อายุเฉลี่ยอยู่ที่ 5 เมื่อ 952 1 วิธีที่ 1 ค่า ARIMA (0,1,1) - โดยไม่คิดค่าคงที่จะกลายเป็นค่าเฉลี่ยเคลื่อนที่ในระยะยาวและเป็น 952 1 แนวทาง 0 มันกลายเป็นแบบสุ่มเดินโดยปราศจาก drift What8217s วิธีที่ดีที่สุดในการแก้ไข autocorrelation: การเพิ่ม AR terms หรือการเพิ่มเงื่อนไข MA ในสองโมเดลก่อนหน้าที่กล่าวข้างต้นปัญหาของความผิดพลาด autocorrelated ในแบบจำลองการเดินแบบสุ่มได้รับการแก้ไขในสองวิธีด้วยกันโดยการเพิ่มค่า lagged ของชุด differenced สมการหรือเพิ่มค่า lag ของข้อผิดพลาดในการคาดการณ์ แนวทางที่ดีที่สุดกฎของหัวแม่มือสำหรับสถานการณ์นี้ซึ่งจะมีการกล่าวถึงในรายละเอียดเพิ่มเติมในภายหลังว่าการเชื่อมโยงความสัมพันธ์ในทางบวกมักจะได้รับการปฏิบัติที่ดีที่สุดโดยการเพิ่มเทอม AR ไปยังโมเดลและการเชื่อมโยงกันในทางลบมักได้รับการปฏิบัติที่ดีที่สุดโดยการเพิ่ม ระยะ MA ในช่วงเวลาทางธุรกิจและเศรษฐกิจอัตลักษณ์เชิงลบมักเกิดขึ้นเป็นสิ่งประดิษฐ์ของความแตกต่าง (โดยทั่วไป differencing ลด autocorrelation บวกและอาจทำให้เกิดการเปลี่ยนจาก autocorrelation บวกกับลบ.) ดังนั้นรูปแบบ ARIMA (0,1,1) ซึ่ง differencing จะมาพร้อมกับระยะ MA จะใช้บ่อยกว่า ARIMA (1,1,0) รุ่น ARIMA (0,1,1) พร้อมกับการเรียบอย่างสม่ำเสมอด้วยการเพิ่มขึ้นอย่างรวดเร็ว: เมื่อใช้โมเดล SES เป็นแบบ ARIMA คุณจะได้รับความยืดหยุ่นบางอย่าง ประการแรกประเมินค่าสัมประสิทธิ์ของค่าสัมประสิทธิ์การใช้ไฟฟ้า (MA) (1) เป็นค่าลบ นี้สอดคล้องกับปัจจัยราบรื่นที่มีขนาดใหญ่กว่า 1 ในรูปแบบ SES ซึ่งโดยปกติจะไม่ได้รับอนุญาตตามขั้นตอนแบบ SES เหมาะสม ประการที่สองคุณมีตัวเลือกในการรวมระยะเวลาคงที่ในรูปแบบ ARIMA หากต้องการเพื่อประเมินแนวโน้มโดยเฉลี่ยที่ไม่ใช่ศูนย์ โมเดล ARIMA (0,1,1) มีค่าคงที่มีสมการทำนาย: การคาดการณ์ล่วงหน้าหนึ่งรอบจากแบบจำลองนี้มีคุณภาพคล้ายคลึงกับแบบจำลอง SES ยกเว้นว่าวิถีของการคาดการณ์ระยะยาวโดยทั่วไปคือ (ซึ่งมีความลาดชันเท่ากับ mu) มากกว่าเส้นแนวนอน ARIMA (0,2,1) หรือ (0,2,2) โดยไม่มีการเพิ่มความเรียบแบบเสียดสีเชิงเส้นแบบคงที่: โมเดลเรียบเรียงเชิงตัวเลขเป็นแบบเชิงเส้นเป็นแบบจำลอง ARIMA ซึ่งใช้ความแตกต่างกันตามคำต่าง ๆ สองแบบร่วมกับข้อกำหนดของ MA ความแตกต่างที่สองของซีรีส์ Y ไม่ใช่แค่ความแตกต่างระหว่าง Y กับตัวเองที่ล้าหลังไปสองช่วงคือความแตกต่างแรกของความแตกต่างแรกคือ การเปลี่ยนแปลงการเปลี่ยนแปลงของ Y ที่ระยะเวลา t ดังนั้นความแตกต่างที่สองของ Y ที่ระยะเวลา t เท่ากับ (Y t - Y t-1) - (Y t-1 - Y t-2) Y t-2Y t-1 Y t-2 ความแตกต่างที่สองของฟังก์ชันแบบไม่ต่อเนื่องมีลักษณะคล้ายคลึงกับอนุพันธ์ที่สองของฟังก์ชันต่อเนื่อง: วัดการอ้างอิงหรือ quotcurvaturequot ในฟังก์ชันตามจุดที่กำหนดในเวลา แบบจำลอง ARIMA (0,2,2) โดยไม่มีค่าคงที่คาดการณ์ว่าความแตกต่างที่สองของชุดเท่ากับฟังก์ชันเชิงเส้นของข้อผิดพลาดในการคาดการณ์สองข้อสุดท้าย: ซึ่งสามารถจัดเรียงใหม่ได้ว่า: ที่ 952 1 และ 952 2 เป็น MA (1) และ MA (2) ค่าสัมประสิทธิ์ นี่คือแบบจำลองการเพิ่มความเรียบแบบเชิงเส้นแบบทั่วไป เป็นหลักเช่นเดียวกับรุ่น Holt8217s และรุ่น Brown8217s เป็นกรณีพิเศษ ใช้ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณเพื่อประมาณทั้งระดับท้องถิ่นและแนวโน้มท้องถิ่นในชุด การคาดการณ์ในระยะยาวจากรุ่นนี้มาบรรจบกันเป็นเส้นตรงซึ่งความลาดชันขึ้นอยู่กับแนวโน้มโดยเฉลี่ยที่สังเกตได้จากช่วงปลายชุด ARIMA (1,1,2) โดยไม่ทำให้เกิดความเรียบแบบเสียดสีเชิงเส้นแบบลดแรงเสียดทาน โมเดลนี้แสดงในภาพนิ่งที่มาพร้อมกับรุ่น ARIMA คาดการณ์แนวโน้มในท้องถิ่นในตอนท้ายของซีรี่ส์ แต่แผ่ออกไปในขอบเขตที่คาดการณ์อีกต่อไปเพื่อนำเสนอข้อความเกี่ยวกับอนุรักษนิยมซึ่งเป็นแนวปฏิบัติที่ได้รับการสนับสนุนเชิงประจักษ์ ดูบทความเกี่ยวกับสาเหตุที่ทำไมผลงาน Trend ที่มีการกระแทกโดย Gardner and McKenzie และบทความ quotGolden Rulequot โดย Armstrong et al. สำหรับรายละเอียด เป็นที่แนะนำโดยทั่วไปให้ยึดติดกับโมเดลซึ่งอย่างน้อยหนึ่ง p และ q ไม่ใหญ่กว่า 1 คือไม่พยายามให้พอดีกับรูปแบบเช่น ARIMA (2,1,2) เนื่องจากมีแนวโน้มที่จะนำไปสู่การ overfitting และปัญหา quotcommon-factorquot ที่กล่าวถึงในรายละเอียดเพิ่มเติมในบันทึกย่อเกี่ยวกับโครงสร้างทางคณิตศาสตร์ของโมเดล ARIMA การใช้งานสเปรดชีต: โมเดล ARIMA เช่นที่อธิบายข้างต้นใช้งานง่ายในสเปรดชีต สมการทำนายเป็นเพียงสมการเชิงเส้นที่อ้างถึงค่าที่ผ่านมาของซีรีส์เวลาเดิมและค่าที่ผ่านมาของข้อผิดพลาด ดังนั้นคุณสามารถตั้งค่าสเปรดชีตการพยากรณ์ ARIMA ได้โดยจัดเก็บข้อมูลในคอลัมน์ A สูตรพยากรณ์ในคอลัมน์ B และข้อผิดพลาด (ข้อมูลลบการคาดการณ์) ในคอลัมน์ C สูตรการคาดการณ์ในเซลล์ทั่วไปในคอลัมน์ B จะเป็นเพียง นิพจน์เชิงเส้นที่อ้างถึงค่าในแถวก่อนหน้าของคอลัมน์ A และ C คูณด้วยค่าสัมประสิทธิ์ของ AR หรือ MA ที่เหมาะสมที่เก็บไว้ในเซลล์ที่อื่นในสเปรดชีต Simple Vs. ค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยอยู่ที่มากกว่าการศึกษาลำดับของตัวเลขตามลำดับ ผู้ปฏิบัติงานช่วงต้นของการวิเคราะห์อนุกรมเวลาเป็นเรื่องที่เกี่ยวข้องกับตัวเลขลำดับเวลาของแต่ละบุคคลมากกว่าที่พวกเขามีอยู่กับการแก้ไขข้อมูลดังกล่าว การแก้ไข ในรูปแบบของทฤษฎีความน่าจะเป็นและการวิเคราะห์มามากในภายหลังเป็นรูปแบบการพัฒนาและ correlations ค้นพบ เมื่อเข้าใจเส้นโค้งที่มีรูปร่างต่างๆและเส้นถูกวาดตามลำดับเวลาในความพยายามที่จะคาดการณ์ที่จุดข้อมูลอาจจะไป ตอนนี้ถือว่าเป็นวิธีการขั้นพื้นฐานที่ใช้โดยนักวิเคราะห์ด้านเทคนิคในปัจจุบัน การวิเคราะห์แผนภูมิสามารถโยงย้อนกลับไปถึงศตวรรษที่ 18 ในประเทศญี่ปุ่นได้อย่างไร แต่อย่างไรและเมื่อใดที่ค่าเฉลี่ยความเคลื่อนไหวเมื่อถูกนำมาประยุกต์ใช้กับราคาในตลาดเป็นเรื่องลึกลับ เป็นที่เข้าใจกันโดยทั่วไปว่าค่าเฉลี่ยเคลื่อนที่แบบธรรมดา (SMA) ใช้มานานก่อนค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) เนื่องจาก EMA สร้างขึ้นจากกรอบ SMA และ SMA continuum สามารถเข้าใจได้ง่ายขึ้นสำหรับการวางแผนและการติดตาม Simple Moving Average (SMA) ค่าเฉลี่ยเคลื่อนที่ง่ายกลายเป็นวิธีที่ต้องการในการติดตามราคาตลาดเนื่องจากสามารถคำนวณได้ง่ายและเข้าใจได้ง่าย ผู้ประกอบการตลาดในยุคต้น ๆ ดำเนินการโดยปราศจากการใช้เมตริกแผนภูมิแบบซับซ้อนในการใช้งานในปัจจุบันดังนั้นพวกเขาจึงพึ่งพาราคาตลาดเป็นคำแนะนำ แต่เพียงผู้เดียว พวกเขาคำนวณราคาตลาดด้วยมือและกราฟราคาดังกล่าวเพื่อแสดงแนวโน้มและทิศทางตลาด กระบวนการนี้ค่อนข้างน่าเบื่อ แต่ก็ได้รับการพิสูจน์ว่ามีผลกำไรมากพอสมควรกับการยืนยันการศึกษาเพิ่มเติม ในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันให้เพิ่มราคาปิดของ 10 วันที่ผ่านมาและหารด้วย 10 ค่าเฉลี่ยเคลื่อนที่ 20 วันคำนวณโดยการเพิ่มราคาปิดในช่วง 20 วันและหารด้วย 20 และ อื่น ๆ สูตรนี้ไม่ได้ขึ้นอยู่เฉพาะในราคาปิด แต่ผลิตภัณฑ์เป็นราคาเฉลี่ยของ - เซตย่อย ค่าเฉลี่ยเคลื่อนที่หมายถึงการเคลื่อนไหวเนื่องจากกลุ่มของราคาที่ใช้คำนวณจะย้ายไปตามจุดบนแผนภูมิ ซึ่งหมายความว่าวันเก่าจะลดลงในความโปรดปรานของราคาปิดวันใหม่ดังนั้นการคำนวณใหม่จำเป็นเสมอที่สอดคล้องกับกรอบเวลาของการจ้างงานโดยเฉลี่ย ดังนั้นการคำนวณค่าเฉลี่ย 10 วันโดยการเพิ่มวันใหม่และลดลงวันที่ 10 และวันที่เก้าจะลดลงในวันที่สอง Exponential Moving Average (EMA) ค่าเฉลี่ยเคลื่อนที่เชิงเส้น (Exponential Moving Average - EMA) ค่าเฉลี่ยเคลื่อนที่เชิงตัวเลขได้รับการปรับแต่งและใช้กันอย่างแพร่หลายตั้งแต่ทศวรรษที่ 1960 เนื่องจากการทดลองกับคอมพิวเตอร์ก่อนหน้านี้ EMA ใหม่จะให้ความสำคัญกับราคาล่าสุดมากกว่าในชุดข้อมูลยาว ๆ ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย EMA ปัจจุบัน ((ราคา (ปัจจุบัน) - EMA ที่ผ่านมา)) ตัวคูณ X) EMA ก่อนหน้า ปัจจัยที่สำคัญที่สุดคือค่าคงที่ที่ราบเรียบที่ 2 (1N) โดยที่ N จำนวนวัน EMA 10 วัน 2 (101) 18.8 หมายถึง EMA 10 ช่วงน้ำหนักล่าสุด 18.8 วัน EMA 20 วัน EMA 9.52 และ 50 วัน EMA 3.92 ในวันล่าสุด EMA ทำงานโดยการชั่งน้ำหนักความแตกต่างระหว่างราคาในงวดปัจจุบันกับ EMA ก่อนหน้าและเพิ่มผลการค้นหาไปยัง EMA ก่อนหน้านี้ ระยะเวลาที่สั้นกว่าจะมีการใช้น้ำหนักมากขึ้นกับราคาล่าสุด เส้นขีดโดยการคำนวณเหล่านี้จุดจะพล็อตเผยให้เห็นเส้นที่เหมาะสม เส้นที่ติดตั้งอยู่เหนือหรือต่ำกว่าราคาตลาดบ่งชี้ว่าค่าเฉลี่ยเคลื่อนที่ทั้งหมดเป็นตัวชี้วัดที่ล่าช้า และใช้เป็นหลักสำหรับแนวโน้มดังต่อไปนี้ พวกเขาไม่ได้ทำงานได้ดีกับตลาดช่วงและช่วงเวลาของความแออัดเนื่องจากสายการประกอบไม่ได้แสดงถึงแนวโน้มเนื่องจากการขาดความชัดเจนสูงขึ้นหรือต่ำกว่าที่ต่ำกว่า นอกจากนี้สายกระชับยังคงมีค่าคงที่โดยไม่ต้องมีคำแนะนำ แนวรับที่เพิ่มขึ้นด้านล่างของตลาดมีความหมายยาวนานในขณะที่สายการผลิตที่พอดีกับขาขึ้นเหนือตลาดหมายถึงระยะสั้น วัตถุประสงค์ของการใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายๆคือการวัดและแนวโน้มโดยการทำให้ข้อมูลมีความเรียบโดยใช้วิธีการหลายกลุ่มของราคา มีแนวโน้มที่จะได้รับการคาดการณ์และคาดการณ์ไว้ สมมติฐานคือการเคลื่อนไหวของแนวโน้มก่อนหน้าจะดำเนินต่อไป สำหรับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆแนวโน้มระยะยาวสามารถพบได้และง่ายขึ้นกว่า EMA โดยมีข้อสันนิษฐานที่สมเหตุสมผลว่าสายพอดีจะแข็งแกร่งกว่าเส้น EMA เนื่องจากมุ่งเน้นไปที่ราคาเฉลี่ย EMA ใช้เพื่อจับภาพการเคลื่อนย้ายแนวโน้มที่สั้นลงเนื่องจากมุ่งเน้นไปที่ราคาล่าสุด โดยวิธีนี้ EMA ควรจะลดความล่าช้าใด ๆ ในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเพื่อให้เส้นที่เหมาะสมจะกอดราคาใกล้กว่าค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ปัญหาที่เกิดขึ้นกับ EMA คือ: มันมีแนวโน้มที่จะแบ่งราคาโดยเฉพาะอย่างยิ่งในช่วงตลาดที่รวดเร็วและช่วงเวลาของความผันผวน EMA ทำงานได้ดีจนกว่าราคาจะพังทลายลง ในช่วงที่ตลาดมีความผันผวนสูงขึ้นคุณสามารถพิจารณาเพิ่มระยะเวลาเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ได้ หนึ่งสามารถเปลี่ยนจาก EMA เป็น SMA เนื่องจาก SMA ทำให้ข้อมูลดีขึ้นกว่า EMA เนื่องจากมุ่งเน้นไปที่วิธีการในระยะยาว ตัวบ่งชี้ที่เป็นตัวบ่งชี้ความเป็นไปได้ในการไต่ระดับต่อเนื่อง หากราคาพุ่งขึ้นต่ำกว่าแนวเส้น 10 วันที่มีแนวโน้มสูงขึ้นโอกาสดีที่แนวโน้มขาลงอาจลดลงหรืออย่างน้อยตลาดอาจรวมตัวกัน หากราคาพุ่งขึ้นเหนือเส้นค่าเฉลี่ย 10 วันในระยะสั้น แนวโน้มอาจลดลงหรือรวมกัน ในกรณีเหล่านี้ให้ใช้ค่าเฉลี่ยเคลื่อนที่ 10 และ 20 วันพร้อมกันและรอให้เส้น 10 วันข้ามด้านบนหรือด้านล่างเส้น 20 วัน ซึ่งจะเป็นตัวกำหนดทิศทางระยะสั้นสำหรับราคาต่อไป สำหรับระยะยาวให้ดูค่าเฉลี่ยเคลื่อนที่ 100 และ 200 วันสำหรับทิศทางในระยะยาว ตัวอย่างเช่นหากใช้ค่าเฉลี่ยเคลื่อนที่ 100 และ 200 วันหากค่าเฉลี่ยเคลื่อนที่ 100 วันต่ำกว่าค่าเฉลี่ย 200 วันจะเรียกว่าเครื่องหมายการเสียชีวิต และเป็นหยาบคายมากสำหรับราคา ค่าเฉลี่ยเคลื่อนที่ 100 วันที่ข้ามค่าเฉลี่ยเคลื่อนที่ 200 วันเรียกว่าไม้กางเขนสีทอง และเป็นที่พอใจมากสำหรับราคา ไม่ว่าจะเป็น SMA หรือ EMA เนื่องจากทั้งสองแบบเป็นตัวบ่งชี้แนวโน้ม โดยเฉพาะในระยะสั้นที่ SMA มีการเบี่ยงเบนเล็กน้อยจากคู่สัญญา EMA บทสรุป Moving averages เป็นพื้นฐานของการวิเคราะห์แผนภูมิและลำดับเวลา ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวชี้วัดที่ซับซ้อนมากขึ้นจะช่วยให้เห็นภาพแนวโน้มโดยการทำให้การเคลื่อนไหวของราคาดีขึ้น การวิเคราะห์ทางเทคนิคบางครั้งเรียกว่าศิลปะมากกว่าวิทยาศาสตร์ซึ่งทั้งสองใช้เวลาหลายปีในการควบคุม (เรียนรู้เพิ่มเติมในบทแนะนำการวิเคราะห์ทางเทคนิคของเรา) วัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการโดยเฉพาะอย่างยิ่งกับการเปลี่ยนแปลงราคาของสินค้า ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณโดยการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ คำสั่งหยุดการสั่งซื้อจะ รอบการจัดหาเงินทุนที่นักลงทุนซื้อหุ้นจาก บริษัท ในราคาที่ต่ำกว่าการประเมินมูลค่าวางไว้ ทฤษฎีเศรษฐศาสตร์ของการใช้จ่ายทั้งหมดในระบบเศรษฐกิจและผลกระทบต่อผลผลิตและอัตราเงินเฟ้อ เศรษฐศาสตร์ Keynesian ได้รับการพัฒนาโดยใช้โมเดลการปรับให้เรียบโดยเฉลี่ยและการอธิบายเป็นขั้นตอนแรกในการเคลื่อนย้ายโมเดลที่มีความหมายสูงกว่าแบบจำลองแบบสุ่มและโมเดลแนวโน้มเชิงเส้นรูปแบบและแนวโน้มที่ไม่เป็นทางการสามารถคาดการณ์ได้โดยใช้แบบจำลองที่เคลื่อนที่โดยเฉลี่ยหรือเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยเคลื่อนที่ (ท้องถิ่น) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้เป็นค่าพยากรณ์สำหรับอนาคตอันใกล้นี้ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยและแบบสุ่มโดยไม่มีการเลื่อนลอย กลยุทธ์เดียวกันสามารถใช้ในการประมาณและคาดการณ์แนวโน้มในท้องถิ่น ค่าเฉลี่ยเคลื่อนที่มักถูกเรียกว่า quotsmoothedquot version ของชุดเดิมเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลต่อการทำให้เรียบออกกระแทกในชุดเดิม โดยการปรับระดับการทำให้เรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราสามารถคาดหวังให้เกิดความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่ม รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยของค่าเฉลี่ยของ Y ที่เวลา t1 ที่ทำในเวลา t เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตการณ์ m ล่าสุด: (ที่นี่และที่อื่น ๆ ฉันจะใช้สัญลักษณ์ 8220Y-hat8221 เพื่อยืน สำหรับการคาดการณ์ของชุดข้อมูล Y เวลาที่เร็วที่สุดเท่าที่เป็นไปได้ก่อนวันที่โดยรูปแบบที่กำหนด) ค่าเฉลี่ยนี้เป็นศูนย์กลางในช่วง t- (m1) 2 ซึ่งหมายความว่าค่าประมาณของท้องถิ่นจะมีแนวโน้มลดลงหลังค่าจริง ค่าเฉลี่ยของท้องถิ่นโดยประมาณ (m1) 2 ช่วงเวลา ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (m1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหในข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า m1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า m มีขนาดใหญ่มาก (เทียบกับความยาวของระยะเวลาประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นเรื่องปกติที่จะได้รับข้อมูลที่ดีที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้จะทำให้ได้คำที่ไม่เหมาะสมใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้ง quotsignalquot (ค่าเฉลี่ยในท้องถิ่น) ถ้าเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 เทอมทำให้เกิดข้อผิดพลาดน้อยกว่าแบบจำลองการเดินแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากรูปแบบการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด วงเงินความเชื่อมั่นที่คำนวณโดย Statgraphics สำหรับการคาดการณ์ในระยะยาวของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะไม่ได้รับมากขึ้นเนื่องจากระยะขอบพยากรณ์อากาศเพิ่มขึ้น เห็นได้ชัดว่าไม่ถูกต้อง แต่น่าเสียดายที่ไม่มีทฤษฎีทางสถิติพื้นฐานที่บอกเราว่าช่วงความเชื่อมั่นควรจะกว้างขึ้นสำหรับรุ่นนี้อย่างไร อย่างไรก็ตามไม่ยากที่จะคำนวณค่าประมาณเชิงประจักษ์ถึงขีดจำกัดความเชื่อมั่นสำหรับการคาดการณ์ระยะยาวของเส้นขอบฟ้า ตัวอย่างเช่นคุณสามารถตั้งค่าสเปรดชีตที่จะใช้โมเดล SMA เพื่อคาดการณ์ล่วงหน้า 2 ขั้นตอนล่วงหน้า 3 ก้าวเป็นต้นภายในตัวอย่างข้อมูลที่ผ่านมา จากนั้นคุณสามารถคำนวณส่วนเบี่ยงเบนมาตรฐานตัวอย่างของข้อผิดพลาดในขอบฟ้าพยากรณ์แต่ละครั้งและสร้างช่วงความเชื่อมั่นสำหรับการคาดการณ์ในระยะยาวโดยการเพิ่มและลบคูณของส่วนเบี่ยงเบนมาตรฐานที่เหมาะสม ถ้าเราลองค่าเฉลี่ยเคลื่อนที่ 9 วันเราจะได้รับการคาดการณ์ที่ราบรื่นขึ้นและผลกระทบที่ปกคลุมด้วยวัตถุฉนวน: อายุเฉลี่ยอยู่ที่ 5 ช่วงเวลา ((91) 2) ถ้าเราใช้ค่าเฉลี่ยเคลื่อนที่ในระยะ 19 วันอายุเฉลี่ยจะเพิ่มขึ้นเป็น 10: สังเกตว่าแท้จริงแล้วการคาดการณ์ในขณะนี้ล้าหลังจุดหักเหประมาณ 10 รอบ นี่คือตารางที่เปรียบเทียบสถิติข้อผิดพลาดของพวกเขาซึ่งรวมถึงค่าเฉลี่ยระยะยาว 3 คำ: Model C ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่ 5 เทอมให้ผลตอบแทนน้อยที่สุดของ RMSE โดยมีขอบเล็กกว่า 3 ค่าเฉลี่ยระยะสั้นและระยะ 9 และสถิติอื่น ๆ ของพวกเขาเกือบจะเท่ากัน ดังนั้นในแบบจำลองที่มีสถิติข้อผิดพลาดที่คล้ายกันมากเราสามารถเลือกได้ว่าจะต้องการการตอบสนองเล็กน้อยหรือมีความเรียบขึ้นเล็กน้อยในการคาดการณ์หรือไม่ (ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักที่ชี้แจง) แบบจำลองค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายที่กล่าวมาข้างต้นมีคุณสมบัติที่ไม่พึงประสงค์ที่จะถือว่าข้อสังเกตสุดท้ายของ k อย่างเท่าเทียมกันและสมบูรณ์ละเว้นการสังเกตทั้งหมดก่อนหน้านี้ โดยนัยข้อมูลที่ผ่านมาควรจะลดราคาในรูปแบบที่ค่อยๆมากขึ้นตัวอย่างเช่นการสังเกตล่าสุดควรมีน้ำหนักมากกว่า 2 ครั้งล่าสุดและครั้งที่ 2 ล่าสุดควรมีน้ำหนักน้อยกว่า 3 ครั้งล่าสุดและ อื่น ๆ แบบเรียบง่าย (SES) ทำให้สำเร็จได้ ให้ 945 แสดงถึงค่าคงที่ quotsmoothing (ตัวเลขระหว่าง 0 ถึง 1) วิธีหนึ่งในการเขียนแบบจำลองคือการกำหนดชุด L ซึ่งแสดงถึงระดับปัจจุบัน (นั่นคือค่าเฉลี่ยในท้องถิ่น) ของชุดข้อมูลดังกล่าวโดยประมาณจากข้อมูลจนถึงปัจจุบัน ค่าของ L ที่เวลา t คำนวณจากค่าก่อนหน้าของตัวเองเช่นนี้ดังนั้นค่าที่เรียบนวลในปัจจุบันเป็นค่า interpolation ระหว่างค่าที่ได้จากการเรียบก่อนหน้าและการสังเกตการณ์ในปัจจุบันซึ่ง 945 จะควบคุมความใกล้ชิดของค่า interpolation กับค่าล่าสุด การสังเกต การคาดการณ์ในช่วงถัดไปเป็นเพียงค่าที่ได้รับการปรับปรุงในปัจจุบัน: เทียบเท่าเราสามารถแสดงการคาดการณ์ต่อไปได้โดยตรงในแง่ของการคาดการณ์ก่อนหน้านี้และข้อสังเกตก่อนหน้าในเวอร์ชันเทียบเท่าใด ๆ ต่อไปนี้ ในรุ่นแรกการคาดการณ์คือการแก้ไขระหว่างการคาดการณ์ก่อนหน้าและการสังเกตก่อนหน้านี้: ในรุ่นที่สองการคาดการณ์ครั้งต่อไปจะได้รับโดยการปรับการคาดการณ์ก่อนหน้านี้ในทิศทางของข้อผิดพลาดก่อนหน้าด้วยจำนวนเศษ 945 ข้อผิดพลาดเกิดขึ้นที่ เวลา t ในรุ่นที่สามการคาดการณ์คือค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกระดับ (เช่นลด) โดยมีปัจจัยการลดราคา 1-945: สูตรการคาดการณ์เวอร์ชันแก้ไขเป็นวิธีที่ง่ายที่สุดในการใช้งานหากคุณใช้โมเดลในสเปรดชีต: เหมาะกับรูปแบบ เซลล์เดี่ยวและมีการอ้างอิงเซลล์ชี้ไปที่การคาดการณ์ก่อนหน้านี้การสังเกตก่อนหน้าและเซลล์ที่เก็บค่า 945 ไว้ โปรดทราบว่าถ้า 945 1 รูปแบบ SES จะเทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า 945 0 รูปแบบ SES จะเท่ากับโมเดลเฉลี่ยโดยสมมติว่าค่าที่เรียบเป็นครั้งแรกจะเท่ากับค่าเฉลี่ย (กลับไปด้านบนสุดของหน้า) อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์การเรียบอย่างง่ายและชี้แจงคือ 1 945 เทียบกับระยะเวลาที่คาดการณ์การคำนวณ (นี้ไม่ควรจะเป็นที่เห็นได้ชัด แต่ก็สามารถแสดงได้โดยการประเมินชุดอนันต์.) ดังนั้นการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายมีแนวโน้มที่จะล่าช้าหลังจุดหักเหประมาณ 1 945 รอบระยะเวลา ตัวอย่างเช่นเมื่อ 945 0.5 ความล่าช้าเป็น 2 ช่วงเวลาเมื่อ 945 0.2 ความล่าช้าเป็น 5 ช่วงเวลาที่ 945 0.1 ความล่าช้าเป็น 10 ช่วงเวลาและอื่น ๆ สำหรับอายุโดยเฉลี่ยที่ระบุ (เช่นจำนวนเงินที่ล่าช้า) การคาดการณ์การทำให้การทำให้ลื่นไหลเรียบแบบสมมุติแบบง่าย (SES) ค่อนข้างดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่อย่างง่าย (SMA) เนื่องจากมีน้ำหนักมากขึ้นในการสังเกตการณ์ล่าสุด - คือ มีการเปลี่ยนแปลงมากขึ้นในช่วงไม่กี่ปีที่ผ่านมา ตัวอย่างเช่นโมเดล SMA ที่มี 9 คำและแบบ SES ที่มี 945 0.2 มีอายุเฉลี่ยอยู่ที่ 5 สำหรับข้อมูลในการคาดการณ์ แต่แบบจำลอง SES จะให้น้ำหนักมากกว่า 3 ค่าที่มากกว่าแบบจำลอง SMA และที่ ในเวลาเดียวกันมันไม่ได้ 8220forget8221 เกี่ยวกับค่ามากกว่า 9 งวดเก่าดังที่แสดงในแผนภูมินี้ข้อได้เปรียบที่สำคัญอีกประการหนึ่งของโมเดล SES ในรูปแบบ SMA คือรูปแบบ SES ใช้พารามิเตอร์การปรับให้ราบเรียบซึ่งเป็นตัวแปรที่เปลี่ยนแปลงได้อย่างต่อเนื่อง โดยใช้อัลกอริธึม quotsolverquot เพื่อลดข้อผิดพลาดกำลังสองเฉลี่ย ค่าที่เหมาะสมที่สุดของ 945 ในแบบจำลอง SES สำหรับชุดข้อมูลนี้จะเท่ากับ 0.2961 ดังแสดงในที่นี้อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 10.2961 3.4 งวดซึ่งใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ 6-term ระยะสั้น การคาดการณ์ระยะยาวจากแบบจำลอง SES เป็นแนวเส้นตรง เช่นเดียวกับในรูปแบบ SMA และรูปแบบการเดินแบบสุ่มโดยไม่มีการเติบโต อย่างไรก็ตามโปรดทราบว่าช่วงความเชื่อมั่นที่คำนวณโดย Statgraphics จะแตกต่างกันไปในรูปแบบที่ดูสมเหตุสมผลและมีความแคบกว่าช่วงความเชื่อมั่นสำหรับรูปแบบการเดินแบบสุ่ม แบบจำลอง SES อนุมานว่าชุดนี้ค่อนข้างจะคาดเดาได้มากกว่าแบบจำลองการเดินแบบสุ่ม แบบจำลอง SES เป็นกรณีพิเศษของรูปแบบ ARIMA ดังนั้นทฤษฎีสถิติของแบบจำลอง ARIMA จึงเป็นพื้นฐานที่ใช้ในการคำนวณช่วงความเชื่อมั่นสำหรับแบบจำลอง SES โดยเฉพาะอย่างยิ่งแบบจำลอง SES คือแบบจำลอง ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างกันหนึ่งคำ MA (1) และไม่มีระยะคงที่ หรือที่เรียกว่าโควต้า (0,1,1) โดยไม่มีค่าคงที่ ค่าสัมประสิทธิ์ MA (1) ในรูปแบบ ARIMA สอดคล้องกับจำนวน 1-945 ในแบบจำลอง SES ตัวอย่างเช่นถ้าคุณพอดีกับรูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่สำหรับชุดข้อมูลที่วิเคราะห์ที่นี่ค่าสัมประสิทธิ์ MA (1) โดยประมาณจะเท่ากับ 0.7029 ซึ่งใกล้เคียงกับค่า 0.2961 เป็นไปได้ที่จะเพิ่มสมมติฐานของแนวโน้มเชิงเส้นที่ไม่เป็นศูนย์ให้เป็นรูปแบบ SES ในการทำเช่นนี้เพียงแค่ระบุรูปแบบ ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งและเทอม MA (1) ที่มีค่าคงที่นั่นคือ ARIMA (0,1,1) โดยมีค่าคงที่ การคาดการณ์ในระยะยาวจะมีแนวโน้มที่เท่ากับแนวโน้มเฉลี่ยที่สังเกตได้ในช่วงประมาณทั้งหมด คุณไม่สามารถดำเนินการนี้ควบคู่กับการปรับฤดูกาลได้เนื่องจากตัวเลือกการปรับฤดูกาลจะถูกปิดใช้งานเมื่อตั้งค่าประเภทของรูปแบบเป็น ARIMA อย่างไรก็ตามคุณสามารถเพิ่มแนวโน้มการชี้แจงในระยะยาวที่คงที่สำหรับแบบจำลองการทำให้เรียบแบบเลขแจงที่เรียบง่าย (โดยมีหรือไม่มีการปรับฤดูกาล) โดยใช้ตัวเลือกการปรับค่าเงินเฟ้อในขั้นตอนการคาดการณ์ อัตราการเติบโตของอัตราแลกเปลี่ยน (quotation) ในแต่ละช่วงเวลาสามารถประมาณได้จากค่าสัมประสิทธิ์ความชันในรูปแบบเส้นตรงที่พอดีกับข้อมูลร่วมกับการแปลงลอการิทึมตามธรรมชาติหรืออาจขึ้นอยู่กับข้อมูลอื่น ๆ ที่เป็นอิสระเกี่ยวกับแนวโน้มการเติบโตในระยะยาว . (กลับไปด้านบนสุดของหน้า) Browns Linear (เช่น double) Exponential Smoothing โมเดล SMA และ SES สมมุติว่าไม่มีแนวโน้มใด ๆ ในข้อมูล (โดยปกติจะเป็นอย่างน้อยหรืออย่างน้อยก็ไม่เลวสำหรับ 1- การคาดการณ์ล่วงหน้าเมื่อข้อมูลมีเสียงดังมาก) และสามารถปรับเปลี่ยนเพื่อรวมแนวโน้มเชิงเส้นคงที่ดังที่แสดงไว้ข้างต้น สิ่งที่เกี่ยวกับแนวโน้มในระยะสั้นหากซีรี่ส์แสดงอัตราการเติบโตที่แตกต่างกันหรือรูปแบบตามวัฏจักรที่โดดเด่นชัดเจนเมื่อเทียบกับเสียงรบกวนและหากมีความจำเป็นต้องคาดการณ์ล่วงหน้ามากกว่า 1 รอบการคาดการณ์แนวโน้มในท้องถิ่นอาจเป็นไปได้ ปัญหา แบบจำลองการทำให้เรียบเรียบง่ายสามารถสรุปเพื่อให้ได้รูปแบบการเรียบแบบเสวนาเชิงเส้น (LES) ซึ่งจะคำนวณการประมาณระดับท้องถิ่นและระดับแนวโน้ม รูปแบบแนวโน้มที่แตกต่างกันตามเวลาที่ง่ายที่สุดคือสีน้ำตาลแบบเสแสร้งแบบเสียดสีแบบเรียบซึ่งใช้ทั้งสองแบบที่เรียบเนียนแตกต่างกันไปตามจุดต่าง ๆ ในเวลา สูตรพยากรณ์ขึ้นอยู่กับการอนุมานของเส้นผ่านทั้งสองศูนย์ (รุ่นที่ซับซ้อนมากขึ้นของรุ่นนี้ Holt8217s ถูกกล่าวถึงด้านล่าง) รูปแบบพีชคณิตของ Brown8217s เชิงเส้นแบบเรียบเช่นเดียวกับรูปแบบการเรียบง่ายชี้แจงสามารถแสดงในรูปแบบที่แตกต่างกัน แต่ที่เท่าเทียมกัน รูปแบบมาตรฐานของแบบจำลองนี้มักจะแสดงดังนี้: ให้ S หมายถึงชุดแบบเดี่ยวที่เรียบง่ายได้โดยใช้การเรียบง่ายแบบเลขยกตัวอย่างให้เป็นชุด Y นั่นคือค่าของ S ในช่วง t จะได้รับโดย: (จำได้ว่าภายใต้หลักการง่ายๆ exponential smoothing นี่คือการคาดการณ์ของ Y ในช่วง t1) จากนั้นให้ Squot แสดงชุดที่มีการคูณทวีคูณขึ้นโดยใช้การเรียบแบบเลขแจงธรรมดา (ใช้แบบเดียวกัน 945) กับชุด S: สุดท้ายการคาดการณ์สำหรับ Y tk สำหรับ kgt1 ใด ๆ ให้โดย: ผลตอบแทนนี้ e 1 0 (เช่นโกงเล็กน้อยและให้การคาดการณ์ครั้งแรกเท่ากับการสังเกตครั้งแรกจริง) และ e 2 Y 2 8211 Y 1 หลังจากที่คาดการณ์จะถูกสร้างโดยใช้สมการข้างต้น ค่านี้จะให้ค่าพอดีกับสูตรตาม S และ S ถ้าค่าเริ่มต้นใช้ S 1 S 1 Y 1 รุ่นของรุ่นนี้ใช้ในหน้าถัดไปที่แสดงให้เห็นถึงการรวมกันของการเรียบแบบเสวนากับการปรับฤดูกาลตามฤดูกาล Holt8217s Linear Exponential Smoothing Brown8217s แบบจำลอง LES คำนวณการประมาณระดับท้องถิ่นและแนวโน้มโดยการให้ข้อมูลที่ราบรื่น แต่ข้อเท็จจริงที่ว่าด้วยพารามิเตอร์เรียบเพียงอย่างเดียวจะกำหนดข้อ จำกัด ของรูปแบบข้อมูลที่สามารถพอดีกับระดับและแนวโน้มได้ ไม่ได้รับอนุญาตให้เปลี่ยนแปลงในอัตราที่เป็นอิสระ แบบจำลอง LES ของ Holt8217s กล่าวถึงปัญหานี้ด้วยการรวมค่าคงที่ที่ราบเรียบสองค่าหนึ่งค่าสำหรับหนึ่งและหนึ่งสำหรับแนวโน้ม ทุกเวลา t เช่นเดียวกับในรุ่น Brown8217s มีการประมาณการ L t ของระดับท้องถิ่นและประมาณการ T t ของแนวโน้มในท้องถิ่น ที่นี่พวกเขาจะได้รับการคำนวณจากค่าของ Y ที่สังเกตได้ในเวลา t และการประมาณค่าก่อนหน้าของระดับและแนวโน้มโดยสมการสองตัวที่ใช้การอธิบายแบบเอกซ์โพเน็นเชียลให้เรียบขึ้น หากระดับและแนวโน้มโดยประมาณของเวลา t-1 คือ L t82091 และ T t-1 ตามลำดับจากนั้นคาดว่า Y tshy ที่จะทำในเวลา t-1 เท่ากับ L t-1 T t-1 เมื่อมีการสังเกตค่าจริงค่าประมาณระดับที่ปรับปรุงใหม่จะถูกคำนวณโดยการ interpolating ระหว่าง Y tshy และการคาดการณ์ L t-1 T t-1 โดยใช้น้ำหนักของ 945 และ 1-945 การเปลี่ยนแปลงระดับโดยประมาณ, คือ L t 8209 L t82091 สามารถตีความได้ว่าเป็นสัญญาณรบกวนของแนวโน้มในเวลา t การประมาณการแนวโน้มของแนวโน้มจะถูกคำนวณโดยการ interpolating ระหว่าง L t 8209 L t82091 และประมาณการก่อนหน้าของแนวโน้ม T t-1 โดยใช้เครื่องชั่ง 946 และ 1-946 การตีความค่าคงที่การทรงตัวของกระแส 946 มีความคล้ายคลึงกับค่าคงที่ของการปรับให้เรียบระดับ 945 โมเดลที่มีค่าน้อย 946 อนุมานได้ว่าแนวโน้มมีการเปลี่ยนแปลงเพียงอย่างช้าๆเมื่อเวลาผ่านไป ใหญ่กว่า 946 สมมติว่ามีการเปลี่ยนแปลงอย่างรวดเร็ว แบบจำลองที่มีขนาดใหญ่ 946 เชื่อว่าในอนาคตอันใกล้นี้มีความไม่แน่นอนมากเนื่องจากข้อผิดพลาดในการคาดการณ์แนวโน้มกลายเป็นสิ่งสำคัญมากเมื่อคาดการณ์ล่วงหน้ามากกว่าหนึ่งช่วง (กลับไปด้านบนสุดของหน้า) ค่าคงที่ที่ราบเรียบ 945 และ 946 สามารถประมาณได้ตามปกติโดยลดข้อผิดพลาดของค่าเฉลี่ยของการคาดการณ์ล่วงหน้า 1 ขั้นตอน เมื่อทำใน Statgraphics ค่าประมาณนี้จะเท่ากับ 945 0.3048 และ 946 0.008 ค่าที่น้อยมากของ 946 หมายความว่ารูปแบบสมมติว่ามีการเปลี่ยนแปลงน้อยมากในแนวโน้มจากระยะหนึ่งไปยังอีกรูปแบบหนึ่งดังนั้นโดยทั่วไปโมเดลนี้กำลังพยายามประมาณแนวโน้มในระยะยาว โดยการเปรียบเทียบกับความคิดของอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประมาณระดับท้องถิ่นของชุดข้อมูลอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มในท้องถิ่นเป็นสัดส่วนกับ 1 946 แม้ว่าจะไม่เท่ากันก็ตาม . ในกรณีนี้ที่กลายเป็น 10.006 125 นี่เป็นตัวเลขที่แม่นยำมากที่สุดเท่าที่ความถูกต้องของค่าประมาณ 946 isn8217t จริง ๆ 3 ตำแหน่งทศนิยม แต่มันก็เป็นเรื่องธรรมดาของขนาดตามตัวอย่างขนาด 100 ดังนั้น รุ่นนี้มีค่าเฉลี่ยมากกว่าค่อนข้างมากของประวัติศาสตร์ในการประมาณแนวโน้ม พล็อตการคาดการณ์ด้านล่างแสดงให้เห็นว่าโมเดล LES ประมาณการแนวโน้มท้องถิ่นในวงกว้างขึ้นเล็กน้อยที่ส่วนท้ายของชุดข้อมูลมากกว่าแนวโน้มที่คงที่ในแบบจำลอง SEStrend นอกจากนี้ค่าประมาณของ 945 เกือบจะเหมือนกันกับที่ได้จากการปรับรุ่น SES ที่มีหรือไม่มีแนวโน้มดังนั้นเกือบจะเป็นแบบเดียวกัน ตอนนี้ดูเหมือนว่าการคาดการณ์ที่สมเหตุสมผลสำหรับโมเดลที่ควรจะประเมินแนวโน้มในระดับท้องถิ่นดูเหมือนว่าแนวโน้มในท้องถิ่นมีแนวโน้มลดลงในตอนท้ายของชุดข้อมูลสิ่งที่เกิดขึ้นพารามิเตอร์ของรุ่นนี้ ได้รับการประเมินโดยการลดข้อผิดพลาดสี่เหลี่ยมของการคาดการณ์ล่วงหน้า 1 ขั้นตอนไม่ใช่การคาดการณ์ในระยะยาวซึ่งในกรณีนี้แนวโน้มไม่ได้สร้างความแตกต่างมากนัก หากสิ่งที่คุณกำลังมองหาคือข้อผิดพลาด 1 ขั้นตอนคุณจะไม่เห็นภาพใหญ่ของแนวโน้มในช่วง 10 หรือ 20 ครั้ง เพื่อให้โมเดลนี้สอดคล้องกับการคาดการณ์ข้อมูลลูกตาของเรามากขึ้นเราจึงสามารถปรับค่าคงที่การปรับให้เรียบตามแนวโน้มเพื่อให้ใช้พื้นฐานที่สั้นกว่าสำหรับการประมาณแนวโน้ม ตัวอย่างเช่นถ้าเราเลือกที่จะตั้งค่า 946 0.1 แล้วอายุเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มท้องถิ่นคือ 10 ช่วงเวลาซึ่งหมายความว่าเรามีค่าเฉลี่ยของแนวโน้มมากกว่าช่วงเวลา 20 ช่วงที่ผ่านมา Here8217s พล็อตการคาดการณ์มีลักษณะอย่างไรถ้าเราตั้งค่า 946 0.1 ขณะเก็บรักษา 945 0.3 นี่ดูเหมาะสมสำหรับชุดนี้แม้ว่าจะเป็นแนวโน้มที่จะคาดการณ์แนวโน้มดังกล่าวได้ไม่น้อยกว่า 10 งวดในอนาคต สิ่งที่เกี่ยวกับสถิติข้อผิดพลาดนี่คือการเปรียบเทียบรูปแบบสำหรับสองรุ่นที่แสดงข้างต้นเช่นเดียวกับสามรุ่น SES ค่าที่เหมาะสมที่สุดคือ 945 สำหรับรุ่น SES มีค่าประมาณ 0.3 แต่ผลการค้นหาที่คล้ายกัน (มีการตอบสนองน้อยหรือน้อยตามลำดับ) จะได้รับค่า 0.5 และ 0.2 (A) Holts linear exp. การให้ความนุ่มนวลด้วย alpha 0.3048 และ beta 0.008 (B) Holts linear exp. การทำให้เรียบด้วยเอ็กซ์พี 0.3 และเบต้า 0.1 (C) การเพิ่มความเรียบง่ายด้วยการอธิบายด้วย alpha 0.5 (D) การทำให้เรียบอย่างง่ายด้วยเอ็กซ์โป 0.3 (E) การเรียบง่ายด้วยเลขแจงอัลฟา 0.2 สถิติของพวกเขาใกล้เคียงกันมากดังนั้นเราจึงสามารถเลือกได้บนพื้นฐาน ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 1 ขั้นตอนภายในตัวอย่างข้อมูล เราต้องกลับไปพิจารณาเรื่องอื่น ๆ ถ้าเราเชื่อว่าการคาดการณ์แนวโน้มในปัจจุบันเกี่ยวกับสิ่งที่เกิดขึ้นในระยะเวลา 20 ปีที่ผ่านมาเราสามารถสร้างกรณีสำหรับโมเดล LES ด้วย 945 0.3 และ 946 0.1 ได้ ถ้าเราต้องการที่จะไม่เชื่อเรื่องว่ามีแนวโน้มในระดับท้องถิ่นแบบใดแบบหนึ่งของ SES อาจอธิบายได้ง่ายกว่านี้และจะให้การคาดการณ์ระดับกลางของถนนต่อไปอีก 5 หรือ 10 ครั้ง ชนิดของแนวโน้มการอนุมานที่ดีที่สุดคือแนวนอนหรือเส้นตรงหลักฐานเชิงประจักษ์ชี้ให้เห็นว่าหากข้อมูลได้รับการปรับแล้ว (ถ้าจำเป็น) สำหรับอัตราเงินเฟ้อแล้วก็อาจจะไม่ระมัดระวังในการคาดการณ์ระยะสั้นในเชิงเส้น แนวโน้มที่ไกลมากในอนาคต แนวโน้มที่เห็นได้ชัดในวันนี้อาจลดลงในอนาคตอันเนื่องมาจากสาเหตุที่แตกต่างกันเช่นความล้าสมัยของผลิตภัณฑ์การแข่งขันที่เพิ่มขึ้นและการชะลอตัวของวัฏจักรหรือการปรับตัวในอุตสาหกรรม ด้วยเหตุนี้การเรียบอย่างง่ายจึงมักจะทำให้ได้ตัวอย่างที่ดีกว่าที่ควรจะเป็นอย่างอื่นแม้จะมีการอนุมานแนวโน้มในแนวนอน การปรับเปลี่ยนรูปแบบการลดลงของรูปแบบการเพิ่มประสิทธิภาพเชิงเส้นแบบเชิงเส้นมักใช้ในการปฏิบัติเพื่อแนะนำโน้ตของอนุรักษนิยมในการคาดการณ์แนวโน้ม โมเดล LES ที่มีแนวโน้มลดลงสามารถใช้เป็นกรณีพิเศษของรูปแบบ ARIMA โดยเฉพาะ ARIMA (1,1,2) เป็นไปได้ในการคำนวณช่วงความเชื่อมั่นรอบการคาดการณ์ในระยะยาวที่ผลิตโดยแบบจำลองการทำให้เรียบโดยพิจารณาเป็นกรณีพิเศษของรูปแบบ ARIMA ความกว้างของช่วงความเชื่อมั่นขึ้นอยู่กับ (i) ข้อผิดพลาด RMS ของโมเดล (ii) ประเภทของการปรับให้เรียบ (แบบง่ายหรือแบบเส้นตรง) (iii) ค่า (s) ของคงที่ราบเรียบ (s) และ (iv) จำนวนรอบระยะเวลาที่คุณคาดการณ์ โดยทั่วไปช่วงเวลาจะกระจายออกไปได้เร็วกว่าเมื่อ 945 มีขนาดใหญ่ขึ้นในรูปแบบ SES และแพร่กระจายได้เร็วกว่ามากเมื่อใช้เส้นตรงมากกว่าการเรียบแบบเรียบ หัวข้อนี้จะกล่าวถึงต่อไปในส่วนรูปแบบ ARIMA ของบันทึกย่อ (กลับไปที่ด้านบนของหน้า.)
Binary   ตัวเลือก ทอง
Forex- ตลาด ชั่วโมง ฟิลิปปินส์