ศูนย์กลางการ เคลื่อนไหว ค่าเฉลี่ย - เครื่องคิดเลข

ศูนย์กลางการ เคลื่อนไหว ค่าเฉลี่ย - เครื่องคิดเลข

Binary   ตัวเลือก - ซีดาร์ การเงิน
ที่ดีที่สุดใน เวลา ต่อการ ค้า ไบนารี ตัวเลือก ใน ออสเตรเลีย
Forex- สัมพันธ์ -trading- EA


ถูกที่สุด ออนไลน์ ซื้อขาย บัญชี -UK Forex- FM เครื่องส่งสัญญาณ คนขับ Cong - TY -forex- Tuyen - มูล Bitcoin -forex- โรงงาน Fiscalidad -forex- espag ± a Forex อ่อนนุช สายฟ้า

ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงเวลา 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะเรียบขึ้น ช่วงค่าที่น้อยกว่าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ที่ใกล้เคียงกับจุดข้อมูลที่เกิดขึ้นจริงค่าเฉลี่ยคำนวณเฉลี่ยรายชื่อข้อมูลตามลำดับคุณสามารถสร้างค่าเฉลี่ยเคลื่อนที่ของ n-point (หรือค่าเฉลี่ยของการกลิ้ง) โดยหาค่าเฉลี่ยของแต่ละชุดของ n จุดติดต่อกัน ตัวอย่างเช่นถ้าคุณมีชุดข้อมูลที่สั่งซื้อไว้ 10, 11, 11, 15, 13, 14, 12, 10, 11 ค่าเฉลี่ยเคลื่อนที่ 4 จุดคือ 11.75, 12.5, 13.25, 13.5, 12.25, 11.75 ค่าเฉลี่ยเคลื่อนที่ เพื่อให้ข้อมูลที่กลมกลืนกันอย่างราบรื่นทำให้ยอดคมชัดลดลงเนื่องจากแต่ละจุดข้อมูลดิบให้น้ำหนักเศษส่วนเพียงเล็กน้อยในค่าเฉลี่ยเคลื่อนที่ ค่าที่มากขึ้นของ n กราฟที่ราบเรียบของค่าเฉลี่ยเคลื่อนที่เมื่อเทียบกับกราฟของข้อมูลต้นฉบับ นักวิเคราะห์หุ้นมักมองไปที่การเคลื่อนไหวโดยเฉลี่ยของข้อมูลราคาหุ้นเพื่อคาดการณ์แนวโน้มและดูรูปแบบที่ชัดเจนมากขึ้น คุณสามารถใช้เครื่องคิดเลขด้านล่างเพื่อหาค่าเฉลี่ยเคลื่อนที่ของชุดข้อมูล จำนวนเงื่อนไขใน n-Point Moving Average โดยง่ายหากจำนวนคำในชุดต้นฉบับมีค่า d และจำนวนคำที่ใช้ในแต่ละค่าเฉลี่ยคือ n จำนวนคำในลำดับค่าเฉลี่ยที่เคลื่อนไหวจะเป็นเช่นถ้าคุณมีลำดับราคาหุ้น 90 และใช้ค่าเฉลี่ยของการกลิ้งเฉลี่ย 14 วันลำดับค่าเฉลี่ยกลิ้งจะมีค่า 90-14.1 77 คะแนน เครื่องคิดเลขนี้คำนวณค่าเฉลี่ยเคลื่อนที่ที่มีการถ่วงน้ำหนักทุกคำเท่ากัน คุณยังสามารถสร้างค่าเฉลี่ยเคลื่อนที่ที่มีการถ่วงน้ำหนักซึ่งคำศัพท์บางคำได้รับน้ำหนักมากกว่าคนอื่น ๆ ยกตัวอย่างเช่นให้น้ำหนักมากขึ้นกับข้อมูลล่าสุดหรือสร้างเกณฑ์ถ่วงน้ำหนักแบบรวมศูนย์ที่มีการนับคำกลางมากขึ้น ดูบทความและเครื่องคิดเลขโดยรวมที่มีการถ่วงน้ำหนักสำหรับข้อมูลเพิ่มเติม พร้อมกับค่าเฉลี่ยเลขคณิตที่เคลื่อนย้ายนักวิเคราะห์บางคนยังมองไปที่ค่ามัธยฐานของข้อมูลที่สั่งซื้อเนื่องจากค่ามัธยฐานไม่ได้รับผลกระทบจากค่าผิดปกติแบบแปลก ๆ ใช่แล้ว MapReduce มีวัตถุประสงค์เพื่อใช้งานข้อมูลจำนวนมาก และแนวคิดก็คือโดยทั่วไปแล้วแผนที่และฟังก์ชันลดไม่ควรดูแลผู้จัดทำแผนที่หรือลดจำนวนที่มีอยู่เพียงเท่านี้การเพิ่มประสิทธิภาพเพียงอย่างเดียว ถ้าคุณคิดอย่างรอบคอบเกี่ยวกับอัลกอริทึมที่ฉันโพสต์คุณจะเห็นว่าไม่ใช่เรื่องสำคัญที่ mapper จะได้รับส่วนใดของข้อมูล แต่ละระเบียนอินพุตจะพร้อมใช้งานสำหรับทุกๆการทำงานที่ต้องการ ndash Joe K 18 กันยายน 2012 เวลา 22:30 ในความเข้าใจที่ดีที่สุดของฉันเฉลี่ยเคลื่อนที่ไม่ได้เป็นอย่างดีแผนที่กับกระบวนทัศน์ MapReduce ตั้งแต่การคำนวณของมันเป็นหลักเลื่อนหน้าต่างไปเรียงลำดับข้อมูลในขณะที่ MR คือการประมวลผลของช่วงที่ไม่ใช่ intersected ของข้อมูลที่เรียงลำดับ โซลูชันที่ฉันเห็นมีดังต่อไปนี้ก) การใช้พาร์ติชันที่กำหนดเองเพื่อให้สามารถทำพาร์ติชันที่แตกต่างกันสองแบบในสองรัน ในการทำงานแต่ละครั้ง reducers ของคุณจะได้รับช่วงข้อมูลที่แตกต่างกันและคำนวณค่าเฉลี่ยเคลื่อนที่ที่เหมาะสมที่ฉันจะพยายามแสดงให้เห็น: ในข้อมูลรันครั้งแรกสำหรับ reducers ควรเป็น: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . ที่นี่คุณจะได้รับค่าเฉลี่ยเคลื่อนที่สำหรับ Qs บางส่วน ในระยะต่อไป reducers ของคุณควรได้รับข้อมูลเช่น: R1: Q1 Q6 R2: Q6 Q10 R3: Q10..Q14 และขจัดส่วนที่เหลือของค่าเฉลี่ยเคลื่อนที่ จากนั้นคุณจะต้องรวมผลการค้นหา ความคิดของพาร์ทิชันแบบกำหนดเองที่จะมีสองโหมดของการทำงาน - แต่ละครั้งแบ่งออกเป็นช่วงที่เท่ากัน แต่มีการเปลี่ยนแปลงบางอย่าง ในเทียมโหนดจะมีลักษณะดังนี้ พาร์ติชัน (keySHIFT) (MAXKEYnumOfPartitions) โดยที่: SHIFT จะถูกนำมาจากการกำหนดค่า MAXKEY ค่าสูงสุดของคีย์ ฉันสันนิษฐานว่าเป็นความเรียบง่ายที่พวกเขาเริ่มต้นด้วยศูนย์ RecordReader, IMHO ไม่ใช่ทางออกเนื่องจากมีข้อ จำกัด ในการแยกเฉพาะและไม่สามารถเลื่อนผ่านขอบเขตการแบ่งแยกได้ อีกวิธีหนึ่งคือการใช้ตรรกะที่กำหนดเองในการแบ่งข้อมูลอินพุท (เป็นส่วนหนึ่งของ InputFormat) สามารถทำได้เพื่อทำ 2 สไลด์ที่แตกต่างกันเช่นเดียวกับการแบ่งพาร์ติชัน ตอบเมื่อวันที่ 17 ก.ย. เวลา 8:59 น
Forex -trading- ศรี ลังกา
Alamat -forex- di- บันดุง