ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ ใน -R

ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ ใน -R

แสดงความคิดเห็น ผู้ประกอบการค้า -des- ตัวเลือก   binaires
คัมมิน สต็อก ตัวเลือก
Forex- CPI - ตัวบ่งชี้


ที่ดีที่สุด แลกเปลี่ยน ซื้อขาย หนังสือ สำหรับ ผู้เริ่มต้น Forex- ตัวแทนจำหน่าย ของสมาชิก NFA เครดิต สวิส -forex- สอบสวน Do -trading- ตัวชี้วัด การทำงาน แอฟริกัน แลกเปลี่ยน โบรกเกอร์ ที่ดีที่สุด การซื้อขายออนไลน์ การ์ด ร้าน

การสำรวจความผันผวนตามค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเชิงตัวเลขเป็นการวัดความเสี่ยงที่พบบ่อยที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่ได้รับเมื่อเร็ว ๆ นี้มีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Google มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตเพื่อให้คุณสามารถทดลองกับความไว) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลเพิ่มเติม แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะถูกเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (เพื่อดูบทแนะนำเกี่ยวกับภาพยนตร์ในหัวข้อนี้ไปที่ Bionic Turtle) ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential - EMA BREAKING DOWN ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential - EMA EMA 12 และ 26 วันเป็นค่าเฉลี่ยระยะสั้นที่ได้รับความนิยมสูงสุดและใช้เป็นค่าเฉลี่ย สร้างตัวบ่งชี้เช่น divergence คอนเวอร์เจนซ์ค่าเฉลี่ยเคลื่อนที่ (MACD) และตัวบ่งชี้ค่าร้อยละ (PPO) โดยทั่วไปแล้ว EMA 50 และ 200 วันใช้เป็นสัญญาณของแนวโน้มในระยะยาว ผู้ค้าที่ใช้การวิเคราะห์ทางเทคนิคพบค่าเฉลี่ยเคลื่อนที่ที่มีประโยชน์และลึกซึ้งเมื่อใช้อย่างถูกต้อง แต่สร้างความหายนะเมื่อใช้ไม่ถูกต้องหรือถูกตีความผิด ค่าเฉลี่ยเคลื่อนที่ทั้งหมดที่ใช้กันโดยทั่วไปในการวิเคราะห์ทางเทคนิคเป็นไปตามลักษณะของตัวชี้วัดที่ล่าช้า ดังนั้นข้อสรุปที่ได้จากการนำค่าเฉลี่ยเคลื่อนที่ไปเป็นกราฟตลาดหนึ่ง ๆ ควรเป็นการยืนยันการเคลื่อนไหวของตลาดหรือเพื่อบ่งชี้ถึงความแข็งแกร่ง บ่อยครั้งเมื่อถึงเวลาที่เส้นค่าเฉลี่ยเคลื่อนไหวได้เปลี่ยนไปเพื่อสะท้อนการเคลื่อนไหวที่สำคัญในตลาดจุดที่เหมาะสมที่สุดของการเข้าสู่ตลาดได้ผ่านไปแล้ว EMA ช่วยลดปัญหานี้ได้บ้าง เนื่องจากการคำนวณ EMA ให้น้ำหนักมากขึ้นกับข้อมูลล่าสุดจึงทำให้การดำเนินการด้านราคาแย่ลงและตอบสนองได้เร็วขึ้น นี่เป็นที่พึงปรารถนาเมื่อใช้ EMA เพื่อรับสัญญาณการซื้อขาย การตีความ EMA เช่นเดียวกับตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่ทั้งหมดพวกเขาจะเหมาะกับตลาดที่มีแนวโน้มมากขึ้น เมื่อตลาดอยู่ในขาขึ้นที่แข็งแกร่งและยั่งยืน เส้นแสดงตัวบ่งชี้ EMA จะแสดงแนวโน้มขาขึ้นและทางกลับกันสำหรับแนวโน้มขาลง ผู้ค้าระมัดระวังจะไม่เพียง แต่ใส่ใจกับทิศทางของเส้น EMA แต่ยังสัมพันธ์ของอัตราการเปลี่ยนแปลงจากแถบหนึ่งไปอีก ตัวอย่างเช่นในขณะที่การดำเนินการตามราคาของขาขึ้นที่แข็งแกร่งจะเริ่มแผ่ออกและพลิกกลับอัตราการเปลี่ยนแปลงของ EMA จากแถบหนึ่งไปยังอีกส่วนหนึ่งจะเริ่มลดลงไปจนกว่าจะถึงเวลาดังกล่าวที่บรรทัดตัวบ่งชี้จะราบเรียบและอัตราการเปลี่ยนแปลงเป็นศูนย์ เนื่องจากผลกระทบที่ปกคลุมด้วยวัตถุฉนวนถึงจุดนี้หรือแม้กระทั่งไม่กี่บาร์ก่อนการดำเนินการด้านราคาน่าจะได้กลับรายการไปแล้ว ดังนั้นจึงเป็นไปได้ว่าการสังเกตการลดอัตราการเปลี่ยนแปลงของ EMA ที่สอดคล้องกันอาจเป็นตัวบ่งชี้ที่สามารถช่วยป้องกันภาวะที่กลืนไม่เข้าคายไม่ออกซึ่งเกิดจากผลกระทบที่เกิดจากการเคลื่อนที่โดยเฉลี่ย การใช้ EMA ทั่วไปของ EMA มักใช้ร่วมกับตัวบ่งชี้อื่น ๆ เพื่อยืนยันการย้ายตลาดที่สำคัญและเพื่อวัดความถูกต้อง สำหรับผู้ค้าที่ค้าขายระหว่างวันและตลาดที่เคลื่อนไหวอย่างรวดเร็ว EMA จะสามารถใช้งานได้มากขึ้น ผู้ค้ามักใช้ EMA เพื่อหาอคติในการซื้อขาย ตัวอย่างเช่นถ้า EMA ในแผนภูมิรายวันแสดงให้เห็นถึงแนวโน้มที่แข็งแกร่งขึ้นกลยุทธ์การค้าระหว่างวันอาจเป็นการค้าเฉพาะจากด้านยาวบนกราฟระหว่างวัน 7.3.7 ค่าเฉลี่ยถ่วงน้ำหนักแบบถ่วงน้ำหนัก (Exponentially Weighted Moving Average - EWMA) 7.3.7 การถ่วงน้ำหนักแบบตัวเลข เฉลี่ยในการปรับสมมติฐานการประมาณค่าเฉลี่ยถ่วงน้ำหนักที่ถ่วงน้ำหนักเหมือนกัน (UWMA) ด้วยความสมจริงของความยืดหยุ่นในตลาดเราอาจใช้ข้อมูลประมาณ 7.10 กับข้อมูลล่าสุดในอดีต ซึ่งน่าจะสะท้อนถึงภาวะตลาดได้มากที่สุด การทำเช่นนี้คือการเอาชนะตนเองเนื่องจากการใช้ estimator 7.10 กับข้อมูลจำนวนเล็กน้อยจะทำให้เกิดข้อผิดพลาดมาตรฐานขึ้น ดังนั้น UWMA จึงสร้างความลังเลใจ: การใช้ข้อมูลจำนวนมากไม่ดี แต่ด้วยการใช้ข้อมูลเพียงเล็กน้อย แรงบันดาลใจนี้ Zangari (1994) เสนอการเปลี่ยนแปลงของ UWMA ที่เรียกว่าค่าเฉลี่ยถ่วงน้ำหนักแบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) ประมาณ 2 นี้ใช้การถ่วงน้ำหนัก nonuniform กับข้อมูลชุดเวลาเพื่อให้ข้อมูลจำนวนมากสามารถนำมาใช้ แต่ข้อมูลล่าสุดมีน้ำหนักมากขึ้นอย่างมาก . เป็นชื่อที่แสดงน้ำหนักขึ้นอยู่กับฟังก์ชันเลขชี้กำลัง การประมาณค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแทนด้วยเลขลำดับแทนค่าประมาณ 7.10 โดยที่ปัจจัยการสลายตัวโดยทั่วไปจะกำหนดค่าระหว่าง. 95 ถึง. 99 ปัจจัยการสลายตัวที่ลดลงมีแนวโน้มที่จะให้น้ำหนักข้อมูลล่าสุดมากขึ้น โปรดทราบว่าการประมาณค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบมีการถ่วงน้ำหนักแบบล้นถูกใช้กันอย่างแพร่หลาย แต่เป็นการปรับปรุงที่เจียมเนื้อเจียมตัวมากกว่า UWMA มันไม่ได้พยายามที่จะจำลองสภาพตลาดที่มีเงื่อนไขความยืดหยุ่นมากกว่า UWMA ใด ๆ โครงการการถ่วงน้ำหนักของโครงการนี้จะเป็นการแทนที่ความไม่แน่ใจเกี่ยวกับจำนวนข้อมูลที่จะใช้กับความลังเลที่คล้ายคลึงกันว่าปัจจัยการสลายตัวที่ก้าวร้าวจะใช้อย่างไร พิจารณาอีกครั้ง 7.6 และตัวอย่างของตำแหน่ง USD 10MM คือ SGD ให้ประมาณ 10 1 โดยใช้ตัวประมาณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักทางลัด 7.20 ถ้าเราใช้. 99 เราได้ค่าประมาณ 10 1 จาก. 0054 ถ้าเราใช้. 95 เราได้ค่าประมาณ. 0067 ซึ่งสอดคล้องกับตำแหน่งที่มีมูลค่าเท่ากับผลการดำเนินงาน 89,000 เหรียญสหรัฐและ 110,000 เหรียญสหรัฐตามลำดับ ข้อ 7.7 ระบุข้อมูล 30 วันของ CHF Libor 1 เดือน ภาพที่ 7.7: ข้อมูลสำหรับ CHF Libor 1 เดือน อัตราคิดเป็นเปอร์เซ็นต์ ที่มา: สมาคมธนาคารอังกฤษ (BBA)
Forex- ความรู้
Bollinger   วง - โมเมนตัม