ชี้แจง - เฉลี่ยเคลื่อนที่ เป็นครั้งแรก ที่มีมูลค่า

ชี้แจง - เฉลี่ยเคลื่อนที่ เป็นครั้งแรก ที่มีมูลค่า

Ejemplo -forex- 100 - dolares
ที่ดีที่สุด การซื้อขาย กลยุทธ์ สำหรับ สินค้าโภคภัณฑ์
มา -si - FA- IL- อัตราแลกเปลี่ยน


Forex การสนับสนุน และ ความต้านทาน เครื่องคิดเลข Forex- ป้องกันความเสี่ยง - ตัวอย่าง Forex- บทเรียน ออนไลน์ Binary ตัวเลือก สัญญาณ สำหรับ nadex พนักงาน หุ้น ตัวเลือก ข้อตกลง แม่แบบ Forexct การตรวจทาน

Average Moving Average ตัวบ่งชี้ทางเทคนิคโดยเฉลี่ยเคลื่อนที่แสดงค่าเฉลี่ยของตราสารในช่วงระยะเวลาหนึ่ง เมื่อคำนวณค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยหนึ่งค่าจากราคาตราสารในช่วงเวลานี้ เมื่อราคาเปลี่ยนแปลงไปค่าเฉลี่ยเคลื่อนที่จะเพิ่มขึ้นหรือลดลง มีสี่ประเภทของค่าเฉลี่ยเคลื่อนที่: Simple (เรียกอีกอย่างว่า Arithmetic), Exponential กระชับและถ่วงน้ำหนัก Moving Average อาจคำนวณได้สำหรับชุดข้อมูลลำดับใด ๆ รวมถึงราคาเปิดและราคาปิดราคาสูงสุดและต่ำสุดปริมาณการซื้อขายหรือตัวชี้วัดอื่น ๆ มักเป็นกรณีที่ใช้ค่าเฉลี่ยเคลื่อนที่สองเท่า สิ่งเดียวที่ค่าเฉลี่ยเคลื่อนที่ของแต่ละประเภทแตกต่างกันมากคือเมื่อค่าสัมประสิทธิ์น้ำหนักที่กำหนดให้กับข้อมูลล่าสุดต่างกัน ในกรณีที่เรากำลังพูดถึง Simple Moving Average ราคาทั้งหมดของช่วงเวลาที่เป็นปัญหามีมูลค่าเท่ากัน Exponential Moving Average และ Linear Weighted Moving Average ให้ความสำคัญกับราคาล่าสุด วิธีที่นิยมใช้ในการตีราคาค่าเฉลี่ยของราคาคือการเปรียบเทียบการเปลี่ยนแปลงของราคากับการดำเนินการด้านราคา เมื่อราคาของตราสารเพิ่มขึ้นเหนือค่าเฉลี่ยเคลื่อนที่สัญญาณซื้อจะปรากฏขึ้นหากราคาต่ำกว่าค่าเฉลี่ยเคลื่อนที่เรามีสัญญาณการขายอะไรบ้าง ระบบการซื้อขายนี้ซึ่งอิงตามค่าเฉลี่ยเคลื่อนที่ไม่ได้ออกแบบมาเพื่อให้เข้าสู่ตลาดได้อย่างถูกต้องในจุดต่ำสุดและทางออกด้านขวาบนยอด จะช่วยให้สามารถปฏิบัติตามแนวโน้มดังต่อไปนี้: ซื้อเร็ว ๆ นี้หลังจากที่ราคาถึงจุดต่ำสุดแล้วและจะขายได้เร็ว ๆ นี้หลังจากที่ราคาถึงจุดสูงสุดแล้ว ค่าเฉลี่ยเคลื่อนที่สามารถใช้กับตัวบ่งชี้ได้ นั่นคือที่การตีความตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่จะคล้ายกับการตีความค่าเฉลี่ยถ่วงน้ำหนักของราคา: ถ้าตัวบ่งชี้สูงขึ้นเหนือค่าเฉลี่ยเคลื่อนที่ของตัวบ่งชี้นั่นหมายความว่าการเคลื่อนไหวของตัวบ่งชี้ที่เพิ่มขึ้นมีแนวโน้มที่จะดำเนินต่อไป: ถ้าตัวบ่งชี้ต่ำกว่าค่าเฉลี่ยเคลื่อนที่ หมายความว่ามีแนวโน้มว่าจะลดลงต่อไป นี่คือประเภทของค่าเฉลี่ยเคลื่อนที่ในแผนภูมิ: ค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนที่เฉลี่ย (SMA) ค่าเฉลี่ยเคลื่อนที่แบบเลื่อนลอย (EMA) Smoothed Moving Average (SMMA) ค่าเฉลี่ยเคลื่อนที่เชิงเส้นแบบเชิงเส้น (LMA) คุณสามารถทดสอบสัญญาณการค้าของตัวบ่งชี้นี้โดยการสร้าง Expert Advisor ใน MQL5 Wizard การคำนวณ Average Moving Average (Simple Average Moving Average - Simple Average Moving Average - Simple Moving Average - Average Average Moving Average - Simple Average Moving Average) หมายถึงการคำนวณค่าเฉลี่ยเคลื่อนที่ (Simple Moving Average - SMA) โดยทั่วไปหมายถึงการคำนวณค่าเฉลี่ยเคลื่อนที่คำนวณโดยสรุปราคาปิดตราสารเป็นระยะเวลาเดียว (เช่น 12 ชั่วโมง) ค่านี้หารด้วยจำนวนงวดดังกล่าว SMA SUM (CLOSE (i), N) N SUM sum CLOSE (i) ระยะเวลาปิดงวดปัจจุบัน N จำนวนรอบการคำนวณ ค่าเฉลี่ยเคลื่อนที่แบบ Exponential (EMA) ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงโดยการสุ่มตัวอย่างคำนวณโดยการเพิ่มส่วนแบ่งบางส่วนของราคาปิดปัจจุบันเป็นค่าก่อนหน้าของค่าเฉลี่ยเคลื่อนที่ ด้วยราคาเฉลี่ยเคลื่อนที่ที่ราบเรียบตามลำดับขั้นตอนราคาปิดล่าสุดมีมูลค่ามากขึ้น ค่าเฉลี่ยถ่วงน้ำหนักของค่า P-percent จะมีลักษณะดังนี้ EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) ปิด (i) ค่า EMA (i - 1) ของ Moving Average ของช่วงก่อนหน้า P เปอร์เซ็นต์ของการใช้ราคา Smoothed Moving Average (SMMA) ค่าแรกของค่าเฉลี่ยเคลื่อนที่แบบเรียบนี้คำนวณเป็นค่าเฉลี่ยเคลื่อนที่แบบเรียบ (SMA): SUM1 SUM (CLOSE (i), N) ค่าเฉลี่ยเคลื่อนที่ที่สองคำนวณตามสูตรนี้: SMMA (i) (SMMA1 (N-1) CLOSE (i)) N ค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้จะคำนวณตามสูตรด้านล่าง: PREVSUM SMMA (i - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) CLOSE (i)) N SUM sum SUM1 ยอดรวมของราคาปิดสำหรับ N period นับจากแถบก่อนหน้า PREVSUM smoothed sum of the previous bar SMMA (i-1) smoothed moving average ของแถบก่อนหน้า SMMA (i) ปรับค่าเฉลี่ยเคลื่อนที่ของแถบปัจจุบัน (ยกเว้นงวดแรก) ปิด (i) ราคาปดปดปดปด N ปจจุบัน หลังจากการแปลงเลขคณิตแล้วสูตรนี้สามารถทำได้ง่ายขึ้น: SMMA (i) (SMMA (i - 1) (N - 1) ปิด (i)) N ค่าเฉลี่ยถ่วงน้ำหนักเชิงเส้น (LWMA) ในกรณีของค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักข้อมูลล่าสุดคือ มีค่ามากกว่าข้อมูลเบื้องต้น ค่าเฉลี่ยถ่วงน้ำหนักที่คำนวณได้จากการคูณด้วยราคาต่อหนึ่งอันของราคาปิดที่อยู่ในชุดพิจารณาโดยใช้ค่าสัมประสิทธิ์น้ำหนัก: LWMA SUM (CLOSE (i) i, N) SUM (i, N) SUM ผลรวม CLOSE (i) SUM (i, N) ผลรวมของค่าสัมประสิทธิ์น้ำหนัก N ระยะเวลาการทำให้ราบเรียบ ค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยอยู่ที่มากกว่าการศึกษาลำดับของตัวเลขตามลำดับ ผู้ปฏิบัติงานช่วงต้นของการวิเคราะห์อนุกรมเวลาเป็นเรื่องที่เกี่ยวข้องกับตัวเลขลำดับเวลาของแต่ละชุดมากกว่าที่พวกเขามีอยู่กับการแก้ไขข้อมูลดังกล่าว การแก้ไข ในรูปแบบของทฤษฎีความน่าจะเป็นและการวิเคราะห์มามากในภายหลังเป็นรูปแบบการพัฒนาและ correlations ค้นพบ เมื่อเข้าใจเส้นโค้งที่มีรูปร่างต่างๆและเส้นถูกวาดตามลำดับเวลาในความพยายามที่จะคาดเดาที่จุดข้อมูลอาจจะไป ตอนนี้ถือว่าเป็นวิธีการขั้นพื้นฐานที่ใช้โดยนักวิเคราะห์ด้านเทคนิคในปัจจุบัน การวิเคราะห์แผนภูมิสามารถโยงย้อนกลับไปถึงศตวรรษที่ 18 ในประเทศญี่ปุ่นได้อย่างไร แต่อย่างไรและเมื่อใดที่ค่าเฉลี่ยความเคลื่อนไหวเมื่อถูกนำมาประยุกต์ใช้กับราคาในตลาดเป็นเรื่องลึกลับ เป็นที่เข้าใจกันโดยทั่วไปว่าค่าเฉลี่ยเคลื่อนที่แบบธรรมดา (SMA) ใช้มานานก่อนค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) เนื่องจาก EMA สร้างขึ้นจากกรอบ SMA และ SMA continuum สามารถเข้าใจได้ง่ายขึ้นสำหรับการวางแผนและการติดตาม Simple Moving Average (SMA) ค่าเฉลี่ยเคลื่อนที่ง่ายกลายเป็นวิธีที่ต้องการในการติดตามราคาตลาดเนื่องจากสามารถคำนวณได้ง่ายและเข้าใจได้ง่าย ผู้ประกอบการตลาดในยุคต้น ๆ ดำเนินการโดยปราศจากการใช้เมตริกแผนภูมิแบบซับซ้อนในการใช้งานในปัจจุบันดังนั้นพวกเขาจึงพึ่งพาราคาตลาดเป็นคำแนะนำ แต่เพียงผู้เดียว พวกเขาคำนวณราคาตลาดด้วยมือและกราฟราคาดังกล่าวเพื่อแสดงแนวโน้มและทิศทางตลาด กระบวนการนี้ค่อนข้างน่าเบื่อ แต่ก็ได้รับการพิสูจน์ว่ามีผลกำไรมากพอสมควรกับการยืนยันการศึกษาเพิ่มเติม ในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันให้เพิ่มราคาปิดของ 10 วันที่ผ่านมาและหารด้วย 10 ค่าเฉลี่ยเคลื่อนที่ 20 วันคำนวณโดยการเพิ่มราคาปิดในช่วง 20 วันและหารด้วย 20 และ อื่น ๆ สูตรนี้ไม่ได้ขึ้นอยู่เฉพาะในราคาปิด แต่ผลิตภัณฑ์เป็นราคาเฉลี่ยของ - เซตย่อย ค่าเฉลี่ยเคลื่อนที่หมายถึงการเคลื่อนไหวเนื่องจากกลุ่มของราคาที่ใช้คำนวณจะย้ายไปตามจุดบนแผนภูมิ ซึ่งหมายความว่าวันเก่าจะลดลงในความโปรดปรานของราคาปิดวันใหม่ดังนั้นการคำนวณใหม่จำเป็นเสมอที่สอดคล้องกับกรอบเวลาของการจ้างงานโดยเฉลี่ย ดังนั้นการคำนวณค่าเฉลี่ย 10 วันโดยการเพิ่มวันใหม่และลดลงวันที่ 10 และวันที่เก้าจะลดลงในวันที่สอง Exponential Moving Average (EMA) ค่าเฉลี่ยเคลื่อนที่เชิงเส้น (Exponential Moving Average - EMA) ค่าเฉลี่ยเคลื่อนที่เชิงตัวเลขได้รับการปรับแต่งและใช้กันอย่างแพร่หลายตั้งแต่ทศวรรษที่ 1960 เนื่องจากการทดลองกับคอมพิวเตอร์ก่อนหน้านี้ EMA ใหม่จะให้ความสำคัญกับราคาล่าสุดมากกว่าในชุดข้อมูลยาว ๆ ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย EMA ปัจจุบัน ((ราคา (ปัจจุบัน) - EMA ที่ผ่านมา)) ตัวคูณ X) EMA ก่อนหน้า ปัจจัยที่สำคัญที่สุดคือค่าคงที่ที่ราบเรียบที่ 2 (1N) โดยที่ N จำนวนวัน EMA 10 วัน 2 (101) 18.8 หมายถึง EMA 10 ช่วงน้ำหนักล่าสุด 18.8 วัน EMA 20 วัน EMA 9.52 และ 50 วัน EMA 3.92 ในวันล่าสุด EMA ทำงานโดยการชั่งน้ำหนักความแตกต่างระหว่างราคาในงวดปัจจุบันกับ EMA ก่อนหน้าและเพิ่มผลการค้นหาไปยัง EMA ก่อนหน้านี้ ระยะเวลาที่สั้นกว่าจะมีการใช้น้ำหนักมากขึ้นกับราคาล่าสุด เส้นขีดโดยการคำนวณเหล่านี้จุดจะพล็อตเผยให้เห็นเส้นที่เหมาะสม เส้นที่ติดตั้งอยู่เหนือหรือต่ำกว่าราคาตลาดบ่งชี้ว่าค่าเฉลี่ยเคลื่อนที่ทั้งหมดเป็นตัวชี้วัดที่ล่าช้า และใช้เป็นหลักสำหรับแนวโน้มดังต่อไปนี้ พวกเขาไม่ได้ทำงานได้ดีกับตลาดช่วงและช่วงเวลาของความแออัดเนื่องจากสายการประกอบไม่ได้แสดงถึงแนวโน้มเนื่องจากการขาดความชัดเจนสูงขึ้นหรือต่ำกว่าที่ต่ำกว่า นอกจากนี้สายกระชับยังคงมีค่าคงที่โดยไม่ต้องมีคำแนะนำ แนวรับที่เพิ่มขึ้นด้านล่างของตลาดมีความหมายยาวนานในขณะที่สายการผลิตที่พอดีกับขาขึ้นเหนือตลาดหมายถึงระยะสั้น วัตถุประสงค์ของการใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายๆคือการวัดและแนวโน้มโดยการทำให้ข้อมูลมีความเรียบโดยใช้วิธีการหลายกลุ่มของราคา มีแนวโน้มที่จะได้รับการคาดการณ์และคาดการณ์ไว้ สมมติฐานคือการเคลื่อนไหวของแนวโน้มก่อนหน้าจะดำเนินต่อไป สำหรับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆแนวโน้มระยะยาวสามารถพบได้และง่ายขึ้นกว่า EMA โดยมีข้อสันนิษฐานที่สมเหตุสมผลว่าสายพอดีจะแข็งแกร่งกว่าเส้น EMA เนื่องจากมุ่งเน้นไปที่ราคาเฉลี่ย EMA ใช้เพื่อจับภาพการเคลื่อนย้ายแนวโน้มที่สั้นลงเนื่องจากมุ่งเน้นไปที่ราคาล่าสุด โดยวิธีนี้ EMA ควรจะลดความล่าช้าใด ๆ ในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเพื่อให้สายกระชับที่จะกอดราคาใกล้กว่าค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ปัญหาที่เกิดขึ้นกับ EMA คือ: มันมีแนวโน้มที่จะแบ่งราคาโดยเฉพาะอย่างยิ่งในช่วงตลาดที่รวดเร็วและช่วงเวลาของความผันผวน EMA ทำงานได้ดีจนกว่าราคาจะพังทลายลง ในช่วงที่ตลาดมีความผันผวนสูงขึ้นคุณสามารถพิจารณาเพิ่มระยะเวลาเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ได้ หนึ่งสามารถเปลี่ยนจาก EMA เป็น SMA เนื่องจาก SMA ทำให้ข้อมูลดีขึ้นกว่า EMA เนื่องจากมุ่งเน้นไปที่วิธีการในระยะยาว ตัวบ่งชี้ที่เป็นตัวบ่งชี้ความเป็นไปได้ในการไต่ระดับต่อเนื่อง หากราคาพุ่งขึ้นต่ำกว่าแนวเส้น 10 วันที่มีแนวโน้มสูงขึ้นโอกาสดีที่แนวโน้มขาลงอาจลดลงหรืออย่างน้อยตลาดอาจรวมตัวกัน หากราคาพุ่งขึ้นเหนือเส้นค่าเฉลี่ย 10 วันในระยะสั้น แนวโน้มอาจลดลงหรือรวมกัน ในกรณีเหล่านี้ให้ใช้ค่าเฉลี่ยเคลื่อนที่ 10 และ 20 วันพร้อมกันและรอให้เส้น 10 วันข้ามด้านบนหรือด้านล่างเส้น 20 วัน ซึ่งจะเป็นตัวกำหนดทิศทางระยะสั้นสำหรับราคาต่อไป สำหรับระยะยาวให้ดูค่าเฉลี่ยเคลื่อนที่ 100 และ 200 วันสำหรับทิศทางในระยะยาว ตัวอย่างเช่นหากใช้ค่าเฉลี่ยเคลื่อนที่ 100 และ 200 วันหากค่าเฉลี่ยเคลื่อนที่ 100 วันต่ำกว่าค่าเฉลี่ย 200 วันจะเรียกว่าเครื่องหมายการเสียชีวิต และเป็นหยาบคายมากสำหรับราคา ค่าเฉลี่ยเคลื่อนที่ 100 วันที่ข้ามค่าเฉลี่ยเคลื่อนที่ 200 วันเรียกว่าไม้กางเขนสีทอง และเป็นที่พอใจมากสำหรับราคา ไม่ว่าจะเป็น SMA หรือ EMA เนื่องจากทั้งสองแบบเป็นตัวบ่งชี้แนวโน้ม โดยเฉพาะในระยะสั้นที่ SMA มีการเบี่ยงเบนเล็กน้อยจากคู่สัญญา EMA บทสรุป Moving averages เป็นพื้นฐานของการวิเคราะห์แผนภูมิและลำดับเวลา ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวชี้วัดที่ซับซ้อนมากขึ้นจะช่วยให้เห็นภาพแนวโน้มโดยการทำให้การเคลื่อนไหวของราคาดีขึ้น การวิเคราะห์ทางเทคนิคบางครั้งเรียกว่าศิลปะมากกว่าวิทยาศาสตร์ซึ่งทั้งสองใช้เวลาหลายปีในการควบคุม (เรียนรู้เพิ่มเติมในบทแนะนำการวิเคราะห์ทางเทคนิคของเรา) วัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการโดยเฉพาะอย่างยิ่งกับการเปลี่ยนแปลงราคาของสินค้า ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณโดยการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ คำสั่งหยุดการสั่งซื้อจะ รอบการจัดหาเงินทุนที่นักลงทุนซื้อหุ้นจาก บริษัท ในราคาที่ต่ำกว่าการประเมินมูลค่าวางไว้ ทฤษฎีเศรษฐศาสตร์ของการใช้จ่ายทั้งหมดในระบบเศรษฐกิจและผลกระทบต่อผลผลิตและอัตราเงินเฟ้อ เศรษฐศาสตร์ Keynes ได้รับการพัฒนาค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวบ่งชี้หนึ่งในตัวบ่งชี้แรกที่ผู้ค้าส่วนใหญ่จะได้เรียนรู้เมื่อค้นหาฟิลด์ที่น่าสนใจของการวิเคราะห์ทางเทคนิคคือ Moving Average การย้ายค่าเฉลี่ยสามารถมีได้หลายวัตถุประสงค์และสามารถใช้หลายวิธีได้บ่อยครั้งขึ้นอยู่กับเป้าหมายของ traderrsquos ราคาของสินทรัพย์ใด ๆ จะไม่ค่อยแสดงรูปแบบเส้นตรงโดยตรง ในกรณีส่วนใหญ่ราคาจะแกว่งไปมาทั้งสองทิศทางแม้ในช่วงขาขึ้นที่แข็งแกร่งหรือขาลงที่แข็งแกร่ง ค่าเฉลี่ยเคลื่อนที่สามารถช่วยให้ผู้ประกอบการค้าสามารถปรับตัวได้ตามความผันผวนของเทียนกับ candle เพื่อให้ได้ค่า lsquoaverage, rsquo Letrsquos ดูตัวอย่างเพื่ออธิบาย: ในแผนภูมิรายวันของ GBPUSD ด้านบนคุณเห็นว่ามีการใช้ Simple Moving Average 200 ช่วง นี่เป็นค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยที่ใช้โดยนักวิเคราะห์ทางเทคนิค สังเกตว่าแนวโน้มมีแนวโน้มที่จะเพิ่มขึ้นสำหรับส่วนมากของระยะเวลาที่สังเกต Moving Average ช่วยให้ผู้ประกอบการรายย่อยสามารถหารายได้ในระยะสั้น ๆ ถึงปานกลางและใช้ค่าเฉลี่ยของผู้ที่มีการเคลื่อนไหวของราคาที่รั้นเพื่อวางแผนการผลิตนี้เป็นราคาที่ต่ำกว่าเกณฑ์การคำนวณของ Simple Moving Average ข้างต้นค่อนข้างง่าย ค่าสำหรับ Moving Average ของเทียนปัจจุบันข้างต้นสามารถคำนวณได้โดยการใช้ราคาปิดล่าสุด 200 รายการโดยการรวมกันแล้วหารด้วย 200 เนื่องจากแนวโน้มราคาใหม่สูงกว่าค่าที่สูงขึ้นเหล่านี้จะช่วยในการเพิ่มมูลค่าของ MA (แม้ว่าเล็กน้อยเนื่องจากราคาใหม่ที่สูงขึ้นเป็นเพียง 1200 เท่าของค่าเฉลี่ยเคลื่อนที่) ตอนนี้คุณอาจสังเกตุเห็นได้ว่าค่าเฉลี่ยเคลื่อนที่จะปรับลดลงตามราคาของตัวบ่งชี้ หากราคาเพิ่มขึ้นเป็นสองเท่าของแถบนี้อีกครั้งจะมีผลกระทบเพียงเล็กน้อยต่อ Average Moving Average เนื่องจากราคาใหม่ (เท่าตัวจากราคาก่อนหน้า) มีเพียง 1200 เท่าของการคำนวณเท่านั้น นี่คือที่ซึ่งค่า Exponential Moving Average (หรือที่เรียกว่า EMA) สามารถช่วยได้ สิ่งสำคัญที่ต้องคำนึงถึงคือปัญหาเรื่องความล่าช้าไม่สามารถลบออกจาก Moving Averages ได้เนื่องจากตัวบ่งชี้จะล้าหลังตลาดโดยธรรมชาติขององค์ประกอบ แต่ผู้ค้าสามารถพยายามบรรเทาข้อเสียนี้และวิธีหนึ่งในการดำเนินการดังกล่าวคือ EMA ด้วยค่าเฉลี่ยการเคลื่อนที่แบบ Exponential rsquo ที่มีน้ำหนักมากขึ้นจะใช้กับค่าล่าสุดเมื่อเทียบกับการเปลี่ยนแปลงล่าสุดในราคาที่มากขึ้นกว่าการเปลี่ยนแปลงในภายหลังในราคา ในตัวอย่างข้างต้นซึ่งราคาเพิ่มขึ้นเป็นสองเท่าในวันนี้ EMA ควรแสดงถึงการเคลื่อนไหวนี้มากกว่าค่าเฉลี่ย Simple Moving Average เนื่องจากมีการกำหนดให้กับแถบปัจจุบันมากขึ้นเนื่องจาก rsquoight เพิ่มเติม ด้านล่างนี้เป็นแผนภูมิเดียวกับที่เราได้ตรวจสอบไว้ด้านบน แต่คราวนี้มี EMA 200 ระยะเวลารวมทั้งค่าเฉลี่ย Simple Moving Average 200 ช่วง ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential เป็นกราฟสีเขียวในแผนภูมิด้านบนและ Irsquove ยังระบุ 2 กรณีที่ระบุด้วยตัวเลข 1 และ 2 ในกรณีแรกให้สังเกตว่าราคากำลังเพิ่มขึ้นอย่างรวดเร็ว ความลาดชันของ Simple Moving Average (ในสีส้ม) เริ่มเคลื่อนที่ขึ้นโดยการลงทะเบียนค่าใหม่เหล่านี้ แต่ยังสังเกตเห็นได้ว่าเส้นสีเขียวจะเคลื่อนที่ขึ้นมากน้อยเพียงใด (ค่า Exponential Moving Average ยังตั้งไว้ที่ 200 ช่วง) และต่อมาในแผนภูมิเช่น 2 ราคาจะกลับไปที่ข้อเสีย อีกครั้ง Green EMA จดทะเบียนความผันผวนของราคาล่าสุดเหล่านี้ได้เร็วกว่า Simple Moving Average ใน Orange และเราสามารถบอกได้ว่าเส้นสีเขียวเริ่มลดลงเร็วกว่าและมีอัตราที่เร็วกว่า นี่คือสิ่งที่เราเห็นเวลาและเวลาอีกครั้งเนื่องจากสูตรทางคณิตศาสตร์ที่อยู่หลังทั้งสองค่าเฉลี่ยจะช่วยให้ EMA สามารถแสดงการเคลื่อนไหวของราคาล่าสุดได้อย่างแพร่หลายมากขึ้น แม้จะมีความแตกต่างของพวกเขายังมีความคล้ายคลึงกันมากระหว่างประเภทต่างๆของค่าเฉลี่ยเคลื่อนที่ ทางเลือกในการที่จะใช้มักจะถูกควบคุมโดยแต่ละ traderrsquos การตั้งค่าส่วนบุคคลหรือรสชาติและอาจสำคัญยิ่งขึ้น ndash เป้าหมายของพวกเขา --- เขียนโดย James B. Stanley หากต้องการติดต่อ James Stanley โปรดส่งอีเมล์ InstructorDailyFX คุณสามารถทำตาม James on Twitter JStanleyFX หากต้องการเข้าร่วมรายการแจกจ่าย James Stanleyrsquos โปรดคลิกที่นี่ DailyFX ให้ข่าว forex และการวิเคราะห์ทางเทคนิคเกี่ยวกับแนวโน้มที่มีผลต่อตลาดสกุลเงินทั่วโลก
ที่ดีที่สุด ออนไลน์ ซื้อขายหุ้น ของ บริษัท   สำหรับ ผู้เริ่มต้น
ธนาคารซิตี้แบงก์ -forex- อัตรา อินเดีย