การพยากรณ์ โดยใช้ การเคลื่อนไหว ค่าเฉลี่ย - Excel

การพยากรณ์ โดยใช้ การเคลื่อนไหว ค่าเฉลี่ย - Excel

Forex- ความร้อน แผนที่ กลยุทธ์
Bzwbk -forex- สาธิต
Forex- ขาย ผู้จัดการ งาน คำอธิบาย


อีฟ ออนไลน์ -trading- ทักษะ คู่มือ Forex- NZD - MYR เอดมันตัน -forex- ผู้ค้า H4 - Bollinger วง กลยุทธ์ สร้าง -a- ซื้อขาย การ์ด เกม ออนไลน์ FYI - อัตราแลกเปลี่ยน

ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงที่ 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะยิ่งเรียบขึ้น ช่วงเวลาที่สั้นกว่านี้ค่าเฉลี่ยของค่าเฉลี่ยที่เคลื่อนที่ได้ใกล้เคียงกับจุดข้อมูลที่เกิดขึ้นจริง ForStream และ Trend เมื่อคุณเพิ่มเส้นแนวโน้มลงในแผนภูมิ Excel Excel สามารถแสดงสมการในแผนภูมิ (ดูด้านล่าง) คุณสามารถใช้สมการนี้เพื่อคำนวณยอดขายในอนาคต ฟังก์ชัน FORECAST และ TREND จะให้ผลลัพธ์ที่เหมือนกัน คำอธิบาย: Excel ใช้วิธีการของสี่เหลี่ยมจัตุรัสอย่างน้อยที่สุดเพื่อค้นหาบรรทัดที่ตรงกับจุดมากที่สุด ค่า R-squared เท่ากับ 0.9295 ซึ่งเหมาะสมมาก ใกล้ชิดกับ 1 เส้นที่เหมาะกับข้อมูลมากขึ้น 1. ใช้สมการเพื่อคำนวณยอดขายในอนาคต 2. ใช้ฟังก์ชันพยากรณ์เพื่อคำนวณยอดขายในอนาคต หมายเหตุ: เมื่อเราลากฟังก์ชัน FORECAST ลงการอ้างอิงแบบสัมบูรณ์ (B2: B11 และ A2: A11) จะยังคงเหมือนเดิมในขณะที่ข้อมูลอ้างอิงสัมพัทธ์ (A12) เปลี่ยนเป็น A13 และ A14 3. หากคุณต้องการใช้สูตรอาร์เรย์ให้ใช้ฟังก์ชัน TREND เพื่อคำนวณยอดขายในอนาคต หมายเหตุ: อันดับแรกเลือกช่วง E12: E14 จากนั้นพิมพ์ TREND (B2: B11, A2: A11, A12: A14) เสร็จสิ้นโดยการกด CTRL SHIFT ENTER แถบสูตรระบุว่านี่คือสูตรอาร์เรย์โดยใส่ไว้ในวงเล็บปีกกา ในการลบสูตรอาร์เรย์นี้ให้เลือกช่วง E12: E14 แล้วกด Delete ในทางปฏิบัติค่าเฉลี่ยเคลื่อนที่จะให้ค่าเฉลี่ยที่ดีของค่าเฉลี่ยของชุดข้อมูลเวลาถ้าค่าเฉลี่ยมีค่าคงที่หรือค่อยๆเปลี่ยนไป ในกรณีของค่าเฉลี่ยคงที่ค่าที่มากที่สุดของ m จะให้ค่าประมาณที่ดีที่สุดของค่าเฉลี่ยต้นแบบ ระยะสังเกตอีกต่อไปจะเป็นค่าเฉลี่ยของผลกระทบของความแปรปรวน วัตถุประสงค์ของการให้ m ที่มีขนาดเล็กคือการให้การคาดการณ์เพื่อตอบสนองต่อการเปลี่ยนแปลงในกระบวนการอ้างอิง เพื่อแสดงให้เห็นว่าเราเสนอชุดข้อมูลที่รวมการเปลี่ยนแปลงค่าเฉลี่ยที่แท้จริงของชุดข้อมูลเวลา ภาพแสดงชุดข้อมูลเวลาที่ใช้สำหรับการแสดงภาพพร้อมกับความต้องการเฉลี่ยที่สร้างขึ้น ค่าเฉลี่ยเริ่มต้นเป็นค่าคงที่ที่ 10 เริ่มต้นที่ 21 เวลาจะเพิ่มขึ้นโดยหนึ่งหน่วยในแต่ละช่วงเวลาจนกว่าจะถึงค่า 20 ในเวลา 30 จากนั้นจะกลายเป็นค่าคงที่อีกครั้ง ข้อมูลจะถูกจำลองด้วยการเพิ่มค่าเฉลี่ยเสียงสุ่มจากการแจกแจงแบบปกติที่มีค่าเป็นศูนย์และส่วนเบี่ยงเบนมาตรฐาน 3. ผลการจำลองจะปัดเป็นจำนวนเต็มใกล้ที่สุด ตารางแสดงการสังเกตแบบจำลองที่ใช้สำหรับตัวอย่าง เมื่อเราใช้ตารางเราต้องจำไว้ว่าในเวลาใดก็ตามข้อมูลที่ผ่านมาเป็นที่รู้จักเท่านั้น การประมาณค่าพารามิเตอร์ของโมเดลสำหรับค่าที่แตกต่างกันสามค่าของ m จะแสดงพร้อมกับค่าเฉลี่ยของชุดข้อมูลเวลาในรูปด้านล่าง ตัวเลขนี้แสดงค่าประมาณเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยในแต่ละครั้งและไม่ใช่การคาดการณ์ การคาดการณ์จะเปลี่ยนเส้นโค้งค่าเฉลี่ยเคลื่อนที่ไปทางขวาตามช่วงเวลา หนึ่งข้อสรุปจะเห็นได้ชัดทันทีจากรูป สำหรับทั้งสามค่าประมาณค่าเฉลี่ยเคลื่อนที่จะล่าช้ากว่าเส้นตรงโดยมีความล่าช้าเพิ่มขึ้นจาก m ความล่าช้าคือระยะห่างระหว่างรูปแบบกับการประมาณในมิติเวลา เนื่องจากความล่าช้าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ต่ำกว่าข้อสังเกตเป็นค่าเฉลี่ยจะเพิ่มขึ้น ความลำเอียงของตัวประมาณคือความแตกต่างในเวลาที่กำหนดในค่าเฉลี่ยของแบบจำลองและค่าเฉลี่ยที่คำนวณโดยค่าเฉลี่ยเคลื่อนที่ ความอคติเมื่อค่าเฉลี่ยเพิ่มขึ้นเป็นลบ สำหรับค่าเฉลี่ยที่ลดลงอคติเป็นบวก ความล่าช้าในเวลาและอคติที่นำมาใช้ในการประมาณค่านี้เป็นหน้าที่ของ m ค่าที่มากขึ้นของ m ยิ่งใหญ่ขนาดของความล่าช้าและอคติ สำหรับซีรีส์ที่เพิ่มขึ้นอย่างต่อเนื่องโดยมีแนวโน้ม a. ค่าของความล่าช้าและความลำเอียงของ estimator ของค่าเฉลี่ยจะได้รับในสมการด้านล่าง เส้นโค้งตัวอย่างไม่ตรงกับสมการเหล่านี้เนื่องจากตัวอย่างไม่ได้เพิ่มขึ้นอย่างต่อเนื่องแทนที่จะเริ่มเป็นค่าคงที่เปลี่ยนเป็นแนวโน้มและจะกลายเป็นค่าคงที่อีกครั้ง นอกจากนี้เส้นโค้งตัวอย่างยังได้รับผลกระทบจากเสียงดัง การคาดการณ์ค่าเฉลี่ยของช่วงเวลาในอนาคตจะแสดงโดยการขยับเส้นโค้งไปทางขวา ความล่าช้าและความลำเอียงเพิ่มขึ้นตามสัดส่วน สมการด้านล่างแสดงถึงความล่าช้าและความลำเอียงของระยะเวลาคาดการณ์ในอนาคตเมื่อเทียบกับพารามิเตอร์ของโมเดล อีกครั้งสูตรเหล่านี้เป็นชุดเวลาที่มีแนวโน้มเชิงเส้นคงที่ เราไม่ควรแปลกใจที่ผลลัพธ์นี้ ตัวประมาณค่าเฉลี่ยเคลื่อนที่อยู่บนพื้นฐานสมมติฐานค่าเฉลี่ยคงที่และตัวอย่างมีแนวโน้มเป็นเส้นตรงตามค่าเฉลี่ยในช่วงระยะเวลาการศึกษา เนื่องจากชุดข้อมูลเรียลไทม์จะไม่ค่อยตรงตามสมมติฐานของรูปแบบใดก็ตามเราควรเตรียมพร้อมสำหรับผลลัพธ์ดังกล่าว นอกจากนี้เรายังสามารถสรุปจากรูปที่ความแปรปรวนของเสียงรบกวนมีผลมากที่สุดสำหรับขนาดเล็ก ค่าประมาณมีความผันผวนมากขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ที่ 5 กว่าค่าเฉลี่ยเคลื่อนที่ของ 20 เรามีความต้องการที่ขัดแย้งกันในการเพิ่ม m เพื่อลดผลกระทบของความแปรปรวนเนื่องจากเสียงรบกวนและลด m เพื่อให้การคาดการณ์ตอบสนองต่อการเปลี่ยนแปลงได้มากขึ้น ในความหมาย ข้อผิดพลาดคือความแตกต่างระหว่างข้อมูลจริงกับค่าคาดการณ์ ถ้าชุดข้อมูลเวลาเป็นค่าคงที่มูลค่าที่คาดไว้ของข้อผิดพลาดจะเป็นศูนย์และความแปรปรวนของข้อผิดพลาดจะประกอบด้วยคำที่เป็นหน้าที่ของและคำที่สองซึ่งเป็นความแปรปรวนของเสียง คำที่หนึ่งคือค่าความแปรปรวนของค่าเฉลี่ยที่ประมาณด้วยตัวอย่างของการสังเกตการณ์ m สมมติว่าข้อมูลมาจากประชากรที่มีค่าเฉลี่ยคงที่ ระยะนี้จะลดลงโดยทำให้ m มีขนาดใหญ่ที่สุด m ที่มีขนาดใหญ่ทำให้การคาดการณ์ไม่ตอบสนองต่อการเปลี่ยนแปลงชุดข้อมูลอ้างอิง เพื่อให้การคาดการณ์สามารถตอบสนองต่อการเปลี่ยนแปลงได้เราต้องการให้ m มีขนาดเล็กที่สุด (1) แต่จะเพิ่มความแปรปรวนของข้อผิดพลาด การคาดการณ์ในทางปฏิบัติต้องมีค่ากลาง การคาดการณ์ด้วย Excel การคาดการณ์ add-in จะใช้สูตรค่าเฉลี่ยเคลื่อนที่ ตัวอย่างด้านล่างแสดงการวิเคราะห์โดย add-in สำหรับข้อมูลตัวอย่างในคอลัมน์ B 10 ข้อสังเกตแรกมีการจัดทำดัชนี -9 ถึง 0 เมื่อเทียบกับตารางด้านบนดัชนีระยะเวลาจะเปลี่ยนไป -10 การสังเกตสิบข้อแรกให้ค่าเริ่มต้นสำหรับการประมาณและใช้คำนวณค่าเฉลี่ยเคลื่อนที่สำหรับช่วงเวลา 0 คอลัมน์ MA (10) (C) แสดงค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ ค่าเฉลี่ยเคลื่อนที่ m อยู่ในเซลล์ C3 คอลัมน์ Fore (1) (D) จะแสดงการคาดการณ์สำหรับระยะเวลาหนึ่งในอนาคต ช่วงคาดการณ์อยู่ในเซลล์ D3 เมื่อช่วงคาดการณ์มีการเปลี่ยนแปลงไปเป็นจำนวนที่มากขึ้นตัวเลขในคอลัมน์ Fore จะถูกเลื่อนลง คอลัมน์ Err (1) (E) แสดงความแตกต่างระหว่างการสังเกตและการคาดการณ์ ตัวอย่างเช่นการสังเกตในเวลาที่ 1 คือ 6 ค่าที่คาดการณ์ไว้จากค่าเฉลี่ยเคลื่อนที่ในช่วงเวลา 0 คือ 11.1 ข้อผิดพลาดคือ -5.1 ค่าเบี่ยงเบนมาตรฐานและค่าเฉลี่ยส่วนเบี่ยงเบนเฉลี่ย (MAD) คำนวณในเซลล์ E6 และ E7 ตามลำดับ
Forex- สาย กีวี
Complexul - Sportiv -forex- Brasov