ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ - ทำนาย

ชี้แจง - ถัว เฉลี่ยเคลื่อนที่ - ทำนาย

Binary   ตัวเลือก ซอฟแวร์
Binary   ตัวเลือก - จ้องจับผิด - ขุดทอง
Andromeda -ii -trading- ระบบ


Forex- ฝัน Forex การฝึกอบรม หลักสูตร โต 1 ชั่วโมง อัตราแลกเปลี่ยน ฟรีดาวน์โหลด วงดนตรี ของ Bollinger Forex- การหลีกเลี่ยง ภาษี Forex -trading- เครือข่ายทางสังคม การค้า ระบบ

การสำรวจความผันผวนตามค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเชิงตัวเลขเป็นการวัดความเสี่ยงที่พบบ่อยที่สุด แต่มีหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่ได้รับเมื่อเร็ว ๆ นี้มีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google จะแสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Google มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตเพื่อให้คุณสามารถทดลองกับความไว) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลเพิ่มเติม แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะถูกเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (หากต้องการดูบทแนะนำเกี่ยวกับภาพยนตร์เกี่ยวกับหัวข้อนี้ไปที่ Bionic Turtle) วิธีการ EWMA มีคุณลักษณะที่น่าสนใจ: ต้องใช้ข้อมูลที่เก็บน้อยมาก หากต้องการอัปเดตค่าประมาณของเราในเวลาใด ๆ เราจะต้องประมาณค่าความแปรปรวนก่อนหน้าและค่าสังเกตล่าสุดเท่านั้น วัตถุประสงค์รองของ EWMA คือการติดตามการเปลี่ยนแปลงความผันผวน สำหรับค่าน้อยค่าสังเกตการณ์ล่าสุดจะมีผลต่อการประมาณการโดยทันที สำหรับค่าที่ใกล้เคียงกับค่าประมาณหนึ่งค่าประมาณจะเปลี่ยนแปลงช้าๆตามการเปลี่ยนแปลงล่าสุดของผลตอบแทนของตัวแปรต้นแบบ ฐานข้อมูล RiskMetrics (ผลิตโดย JP Morgan และเผยแพร่ต่อสาธารณะ) ใช้ EWMA เพื่อปรับปรุงความผันผวนทุกวัน สำคัญ: สูตร EWMA ไม่ถือว่าเป็นระดับความแปรปรวนเฉลี่ยระยะยาว ดังนั้นแนวคิดเรื่องความผันผวนของค่าความผันผวนไม่ได้มาจาก EWMA โมเดล ARCHGARCH เหมาะสำหรับวัตถุประสงค์นี้มากขึ้น วัตถุประสงค์รองของ EWMA คือการติดตามการเปลี่ยนแปลงความผันผวนดังนั้นค่าเล็กน้อยการสังเกตล่าสุดจึงมีผลต่อการประมาณการณ์โดยทันทีและสำหรับค่าที่ใกล้เคียงกับค่าประมาณหนึ่งค่าประมาณจะเปลี่ยนแปลงไปอย่างช้าๆต่อการเปลี่ยนแปลงล่าสุดในการส่งกลับค่าของตัวแปรต้นแบบ ฐานข้อมูล RiskMetrics (ผลิตโดย JP Morgan) และเผยแพร่ต่อสาธารณะในปี 2537 ใช้แบบจำลอง EWMA พร้อมสำหรับการอัปเดตการประมาณความผันผวนทุกวัน บริษัท พบว่าในช่วงของตัวแปรตลาดค่านี้จะให้ค่าพยากรณ์ความแปรปรวนที่ใกล้เคียงกับอัตราความแปรปรวนที่แท้จริง อัตราความแปรปรวนที่เกิดขึ้นในแต่ละวันจะคำนวณเป็นค่าเฉลี่ยถ่วงน้ำหนักเท่ากันในอีก 25 วัน ในทำนองเดียวกันเพื่อคำนวณค่าที่ดีที่สุดของ lambda สำหรับชุดข้อมูลของเราเราจำเป็นต้องคำนวณความผันผวนที่เกิดขึ้น ณ แต่ละจุด มีหลายวิธีให้เลือก จากนั้นคำนวณผลรวมของข้อผิดพลาด (SSE) ระหว่างประมาณการ EWMA กับความผันผวนที่เกิดขึ้นจริง สุดท้ายลด SSE โดยเปลี่ยนค่า lambda ฟังดูง่าย ความท้าทายที่ใหญ่ที่สุดคือการยอมรับวิธีการคำนวณความผันผวนที่เกิดขึ้น ตัวอย่างเช่นคนที่ RiskMetrics เลือก 25 วันหลังจากนั้นเพื่อคำนวณอัตราความแปรปรวนที่ได้รับ ในกรณีของคุณคุณอาจเลือกอัลกอริทึมที่ใช้ปริมาณรายวัน HILO และหรือ OPEN-CLOSE ราคา Q: เราสามารถใช้ EWMA ในการประเมินความผันผวนของความแปรปรวน (หรือคาดการณ์) ได้มากกว่าหนึ่งก้าวการแสดงความผันผวนของ EWMA ไม่ถือว่าเป็นความผันผวนเฉลี่ยในระยะยาวและด้วยเหตุนี้สำหรับขอบฟ้าที่คาดการณ์ไว้มากกว่าหนึ่งขั้นตอน EWMA จะส่งกลับค่าคงที่ ค่าเฉลี่ย: ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่โดยใช้ชุดข้อมูลแบบเดิมค่าเฉลี่ยหมายถึงค่าสถิติแรกที่เป็นประโยชน์และมีประโยชน์มากที่สุดแห่งหนึ่งในการคำนวณ เมื่อข้อมูลอยู่ในรูปแบบของชุดเวลาซีรี่ส์หมายถึงการวัดที่เป็นประโยชน์ แต่ไม่ได้สะท้อนถึงลักษณะพลวัตของข้อมูล ค่าเฉลี่ยที่คำนวณจากช่วงสั้น ๆ ก่อนหน้าช่วงเวลาปัจจุบันหรือตรงกลางในช่วงเวลาปัจจุบันมักมีประโยชน์มากกว่า เนื่องจากค่าเฉลี่ยดังกล่าวจะแปรผันหรือเคลื่อนย้ายเนื่องจากระยะเวลาปัจจุบันจะเคลื่อนที่จากเวลา t 2, t 3 เป็นต้นเรียกว่าค่าเฉลี่ยเคลื่อนที่ (Mas) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยคือ (โดยปกติ) ค่าเฉลี่ยที่ไม่มีการถัวเฉลี่ยของค่าก่อนหน้า k ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลังเป็นหลักเหมือนกับค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย แต่มีส่วนร่วมกับค่าเฉลี่ยที่ถ่วงน้ำหนักโดยความใกล้ชิดกับเวลาปัจจุบัน เนื่องจากไม่มีตัวอักษร แต่เป็นชุดค่าเฉลี่ยเคลื่อนที่ทั้งหมดสำหรับชุดใดก็ตามชุดของ Mas สามารถถูกจัดวางลงบนกราฟวิเคราะห์เป็นชุดและใช้ในการสร้างแบบจำลองและการคาดการณ์ ช่วงของแบบจำลองสามารถสร้างโดยใช้ค่าเฉลี่ยเคลื่อนที่และเป็นที่รู้จักในรูปแบบ MA ถ้าโมเดลดังกล่าวรวมกับโมเดลอัตถิภาวนิยม (AR) รูปแบบคอมโพสิตที่เป็นที่รู้จักกันในชื่อ ARMA หรือ ARIMA (แบบบูรณาการ) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเนื่องจากชุดเวลาสามารถถือได้ว่าเป็นชุดของค่า, t 1,2,3,4, n ค่าเฉลี่ยของค่าเหล่านี้สามารถคำนวณได้ ถ้าเราคิดว่า n มีขนาดค่อนข้างใหญ่และเราเลือกจำนวนเต็ม k ซึ่งน้อยกว่า n เราสามารถคำนวณชุดค่าเฉลี่ยบล็อกหรือค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ (ของคำสั่ง k): แต่ละค่าจะแสดงค่าเฉลี่ยของค่าข้อมูลในช่วงเวลาสังเกตการณ์ k โปรดทราบว่า MA ที่เป็นไปได้ครั้งแรกของคำสั่ง k GT0 คือสำหรับ t k โดยทั่วไปเราสามารถลด subscript พิเศษในนิพจน์ด้านบนและเขียนได้: ค่านี้ระบุว่าค่าเฉลี่ยที่เวลา t เป็นค่าเฉลี่ยที่ง่ายของค่าที่สังเกตได้ ณ เวลา t และขั้นตอน k-1 ก่อนหน้า ถ้าใช้น้ำหนักที่ลดการมีส่วนร่วมของการสังเกตที่ไกลออกไปในเวลาค่าเฉลี่ยเคลื่อนที่จะกล่าวได้ว่าเป็นแบบเรียบ ค่าเฉลี่ยเคลื่อนที่มักใช้เป็นรูปแบบของการคาดการณ์โดยที่ค่าประมาณสำหรับชุดในเวลา t 1, S t1 ถูกนำมาเป็น MA สำหรับระยะเวลาถึงและรวมถึงเวลา t เช่น. การประมาณในปัจจุบันคำนวณจากค่าเฉลี่ยที่บันทึกไว้ก่อนหน้านี้และรวมถึงวันวาน (สำหรับข้อมูลรายวัน) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายสามารถเห็นได้ว่าเป็นรูปแบบการทำให้เรียบ ในตัวอย่างที่แสดงด้านล่างชุดข้อมูลมลพิษทางอากาศที่แสดงในบทนำสู่หัวข้อนี้ได้รับการเพิ่มขึ้นโดยเส้นค่าเฉลี่ยเคลื่อนที่ 7 วัน (MA) ซึ่งแสดงเป็นสีแดง ที่สามารถมองเห็นได้สาย MA ช่วยให้จุดสูงสุดและร่องในข้อมูลเป็นไปอย่างราบรื่นและเป็นประโยชน์ในการระบุแนวโน้ม สูตรคำนวณการคำนวณล่วงหน้าหมายถึงจุดข้อมูล k -1 จุดแรกไม่มีค่า MA แต่หลังจากนั้นการคำนวณจะขยายไปยังจุดข้อมูลสุดท้ายในชุดข้อมูล ค่าเฉลี่ยของวัน PM10 แหล่งที่มาของ Greenwich: London Air Quality Network, londonair.org.uk เหตุผลหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆในลักษณะที่อธิบายไว้คือค่าที่คำนวณได้สำหรับช่วงเวลาทั้งหมดตั้งแต่เวลา tk ขึ้นไปจนถึงปัจจุบันและ เป็นวัดใหม่ที่ได้รับสำหรับเวลา t 1, MA สำหรับเวลา t 1 สามารถเพิ่มไปยังชุดที่คำนวณแล้ว นี่เป็นขั้นตอนง่ายๆสำหรับชุดข้อมูลแบบไดนามิก อย่างไรก็ตามมีบางประเด็นเกี่ยวกับแนวทางนี้ มีเหตุผลที่จะยืนยันว่าค่าเฉลี่ยในช่วง 3 ช่วงสุดท้ายกล่าวคือควรตั้งอยู่ที่เวลา t -1 ไม่ใช่เวลา t และสำหรับ MA มากกว่าจำนวนคู่ของระยะเวลาบางทีมันควรจะอยู่ที่จุดกึ่งกลางระหว่างสองช่วงเวลา วิธีแก้ปัญหานี้คือการใช้การคำนวณ MA ซึ่งอยู่ตรงกลางซึ่ง MA ในเวลา t เป็นค่าเฉลี่ยของชุดสมมาตรของค่ารอบ t แม้จะมีประโยชน์อย่างเห็นได้ชัด แต่วิธีนี้ใช้ไม่ได้โดยทั่วไปเนื่องจากต้องการข้อมูลที่พร้อมใช้งานสำหรับเหตุการณ์ในอนาคตซึ่งอาจจะไม่ใช่กรณีนี้ ในกรณีที่การวิเคราะห์ทั้งหมดเป็นชุดที่มีอยู่การใช้ Mas ไว้ตรงกลางอาจเป็นที่นิยมกว่า ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายอาจถือได้ว่าเป็นรูปแบบหนึ่งของการปรับให้เรียบลบองค์ประกอบความถี่สูงบางส่วนของชุดเวลาและเน้นแนวโน้ม (แต่ไม่ลบ) ในลักษณะเดียวกันกับแนวคิดทั่วไปของการกรองแบบดิจิทัล แท้จริงค่าเฉลี่ยเคลื่อนที่คือรูปแบบของตัวกรองเชิงเส้น คุณสามารถใช้การคำนวณค่าเฉลี่ยเคลื่อนที่เป็นชุดที่ได้รับการปรับให้เรียบขึ้นแล้วเช่นการทำให้เรียบหรือกรองชุดที่เรียบขึ้นไปแล้ว ตัวอย่างเช่นมีค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 เราสามารถพิจารณาว่าคำนวณโดยใช้น้ำหนักดังนั้น MA ที่ x 2 0.5 x 1 0.5 x 2 ในทำนองเดียวกัน MA ที่ x 3 0.5 x 2 0.5 x 3 ถ้าเรา เราใช้ 0.5 x 2 0.5 x 3 0.5 (0.5 x 1 0.5 x 2) 0.5 (0.5 x 2 0.5 x 3) 0.25 x 1 0.5 x 2 0.25 x 3 เช่นการกรองแบบ 2 ขั้นตอน กระบวนการ (หรือ convolution) ได้สร้างค่าเฉลี่ยเคลื่อนที่แบบสมมาตรที่มีการถ่วงน้ำหนักที่มีการเปลี่ยนแปลงโดยมีน้ำหนัก หลาย convolutions สามารถผลิตค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักค่อนข้างซับซ้อนซึ่งบางส่วนมีการใช้งานเฉพาะในสาขาพิเศษเช่นในการคำนวณการประกันชีวิต ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการลบเอฟเฟ็กต์เป็นระยะ ๆ หากคำนวณด้วยระยะเวลาเป็นระยะ ๆ ตามที่ทราบ ตัวอย่างเช่นเมื่อมีข้อมูลรายเดือนข้อมูลตามฤดูกาลสามารถเปลี่ยนแปลงได้โดยการใช้ค่าเฉลี่ยเคลื่อนที่ 12 เดือนที่สมมาตรกับทุกเดือนที่มีการถ่วงน้ำหนักอย่างเท่าเทียมกันยกเว้นกรณีที่ 1 และครั้งสุดท้ายที่มีการถ่วงน้ำหนักด้วย 12 เนื่องจากมี เป็นเวลา 13 เดือนในรูปแบบสมมาตร (ปัจจุบัน, t. - 6 เดือน) ทั้งหมดถูกแบ่งโดย 12 ขั้นตอนที่คล้ายกันสามารถนำมาใช้สำหรับระยะเวลาที่กำหนดไว้อย่างชัดเจน ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก (Expedential Weighted Moving Average - EWMA) โดยใช้สูตรค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ: การสังเกตทั้งหมดมีการถ่วงน้ำหนักอย่างเท่าเทียมกัน ถ้าเราเรียกว่าน้ำหนักเท่ากันนี้อัลฟา t แต่ละ k น้ำหนักจะเท่ากับ 1 k ดังนั้นผลรวมของน้ำหนักจะเป็น 1 และสูตรจะเป็น: เราได้เห็นแล้วว่าการใช้งานหลายขั้นตอนนี้ส่งผลให้น้ำหนักที่แตกต่างกัน ด้วยค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกกำลังให้ความสำคัญกับค่าเฉลี่ยจากการสังเกตที่ถูกลบออกไปในเวลามากขึ้นจะลดลงด้วยเหตุนี้จึงเน้นเหตุการณ์ที่เกิดขึ้นเมื่อเร็ว ๆ นี้ โดยทั่วไปจะมีการปรับค่าพารามิเตอร์การให้ราบเรียบ alpha lt1 ll1 และสูตรที่ได้รับการแก้ไขไปเป็น: รูปแบบสมมาตรของสูตรนี้จะมีรูปแบบดังนี้: ถ้าน้ำหนักในรูปแบบสมมาตรถูกเลือกเป็นเงื่อนไขของข้อกำหนดของการขยายตัวแบบทวินาม (1212) 2q พวกเขาจะรวมกันเป็น 1 และเมื่อ q กลายเป็นขนาดใหญ่จะใกล้เคียงกับการแจกแจงแบบปกติ นี่คือรูปแบบของการถ่วงน้ำหนักของเคอร์เนลโดยมีฟังก์ชัน Binomial ทำหน้าที่เป็นฟังก์ชันเคอร์เนล การแกว่งสองขั้นตอนที่อธิบายไว้ในหมวดย่อยก่อนหน้านี้คือการจัดเรียงนี้อย่างแม่นยำด้วย q 1 ซึ่งให้น้ำหนัก ในการทำให้เรียบเรียบขึ้นจำเป็นต้องใช้ชุดของน้ำหนักที่รวมกันเป็น 1 และลดขนาดทางเรขาคณิต น้ำหนักที่ใช้มีรูปแบบดังนี้: เพื่อแสดงให้เห็นว่าน้ำหนักเหล่านี้รวมกันเป็น 1 ให้พิจารณาการขยายตัวเป็น 1 เป็นชุด เราสามารถเขียนและขยายนิพจน์ในวงเล็บโดยใช้สูตรทวินาม (1- x) p. โดยที่ x (1-) และ p -1 ซึ่งจะให้: ค่านี้จะให้รูปแบบของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของแบบฟอร์ม: ผลรวมนี้สามารถเขียนเป็นความสัมพันธ์ที่เกิดซ้ำได้ซึ่งช่วยลดความซับซ้อนในการคำนวณและหลีกเลี่ยงปัญหาที่ระบบการถ่วงน้ำหนัก ควรมีความยาวไม่ จำกัด สำหรับน้ำหนักที่จะรวมกันเป็น 1 (สำหรับค่าอัลฟ่าเล็กน้อยนี่ไม่ใช่กรณีปกติ) สัญกรณ์ที่ใช้โดยผู้เขียนที่แตกต่างกันจะแตกต่างกันออกไป บางคนใช้ตัวอักษร S เพื่อระบุว่าสูตรนั้นเป็นตัวแปรที่ราบรื่นและเขียนว่า: ในขณะที่ทฤษฎีวรรณคดีควบคุมมักใช้ Z แทน S สำหรับค่าที่ถ่วงน้ำหนักหรือเรียบเรียงเป็นพหุคูณ (ดูตัวอย่างเช่น Lucas and Saccucci, 1990, LUC1 , และเว็บไซต์ NIST สำหรับรายละเอียดเพิ่มเติมและตัวอย่างการทำงาน) สูตรที่อ้างถึงข้างต้นมาจากผลงานของ Roberts (1959, ROB1) แต่ Hunter (1986, HUN1) ใช้การแสดงออกของรูปแบบ: ซึ่งอาจเหมาะสมกว่าสำหรับการใช้ในขั้นตอนการควบคุมบางอย่าง ด้วยค่า alpha 1 ค่าประมาณเฉลี่ยคือค่าที่วัดได้ (หรือมูลค่าของรายการข้อมูลก่อนหน้า) ด้วยค่าประมาณ 0.5 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ของการวัดในปัจจุบันและก่อนหน้า ในรูปแบบการคาดการณ์ S t. มักใช้เป็นประมาณการหรือค่าพยากรณ์ในช่วงเวลาต่อไปนั่นคือค่าประมาณสำหรับ x ณ เวลา t ดังนั้นเราจึงได้แสดงให้เห็นว่าค่าพยากรณ์ที่ t 1 เป็นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบ บวกกับส่วนประกอบที่แสดงถึงข้อผิดพลาดในการทำนายถ่วงน้ำหนักเอปไซลอน เวลา t สมมติว่ามีชุดเวลาและต้องมีการคาดการณ์ค่าอัลฟาต้อง นี้สามารถประมาณจากข้อมูลที่มีอยู่โดยการประเมินผลรวมของข้อผิดพลาดการทำนายกำลังสองได้รับกับค่าที่แตกต่างของ alpha สำหรับแต่ละ t 2,3 การกำหนดค่าแรกที่จะเป็นค่าข้อมูลที่สังเกตได้ครั้งแรก x 1. ในแอ็พพลิเคชันควบคุมค่าของอัลฟามีความสำคัญในการใช้ในการกำหนดขีด จำกัด การควบคุมด้านบนและด้านล่างและมีผลต่อระยะเวลาในการทำงานโดยเฉลี่ย (ARL) ก่อนที่ข้อ จำกัด ในการควบคุมเหล่านี้จะเสีย (ภายใต้สมมติฐานว่าชุดข้อมูลเวลาเป็นชุดของตัวแปรอิสระที่แจกแจงแบบกระจายเดียวกันซึ่งมีความแปรปรวนร่วมกัน) ภายใต้สถานการณ์เช่นนี้ความแปรปรวนของสถิติการควบคุม: คือ (ลูคัสและ Saccucci, 1990): ขีด จำกัด ของการควบคุมมักจะตั้งค่าเป็นทวีคูณที่คงที่ของความแปรปรวนของการไม่ทำงานนี้เช่น - ค่าเบี่ยงเบนมาตรฐาน 3 เท่า ถ้าตัวอย่างเช่น alpha 0.25 และข้อมูลที่ได้รับการตรวจสอบจะถือว่ามีการแจกแจงแบบปกติ N (0,1) เมื่ออยู่ในการควบคุมขีด จำกัด ของการควบคุมจะเป็น - 1.134 และกระบวนการนี้จะถึงหนึ่งหรือขีด จำกัด อื่น ๆ ใน 500 ขั้นตอน โดยเฉลี่ย. Lucas และ Saccucci (1990 LUC1) ได้รับค่า ARLs สำหรับค่า alpha และภายใต้สมมติฐานต่างๆโดยใช้กระบวนการ Markov Chain พวกเขาจัดทำเป็นตารางผลลัพธ์รวมถึงการให้ ARLs เมื่อค่าเฉลี่ยของกระบวนการควบคุมได้รับการเปลี่ยนแปลงโดยค่าเบี่ยงเบนมาตรฐานหลายค่าหลายค่า ตัวอย่างเช่นเมื่อมีการเปลี่ยนแปลง 0.5 กับ alpha 0.25 ARL น้อยกว่า 50 ขั้นตอนเวลา วิธีการที่อธิบายข้างต้นเป็นที่รู้จักกันในชื่อเดียวเรียบ เป็นขั้นตอนที่ใช้ครั้งเดียวกับชุดเวลาและจากนั้นการวิเคราะห์หรือควบคุมกระบวนการจะดำเนินการในชุดข้อมูลที่เกิดเรียบ หากชุดข้อมูลมีส่วนประกอบของเทรนด์ตามฤดูกาลหรืออาจใช้การทำให้เรียบแบบทวีคูณแบบสองขั้นตอนหรือสามขั้นตอนเพื่อใช้เป็นแนวทางในการลบผลกระทบเหล่านี้ (ดูเพิ่มเติมที่ส่วนการพยากรณ์อากาศด้านล่างและตัวอย่างการทำงานของ NIST) CHA1 Chatfield C (1975) การวิเคราะห์ไทม์ซีรี่ส์: ทฤษฎีและการปฏิบัติ แชปแมนและฮอลล์, ลอนดอน HUN1 เธ่อเจเอส (1986) ค่าเฉลี่ยถ่วงน้ำหนักแบบเลขยกกำลัง J ของ Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) แผนการควบคุมค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ: คุณสมบัติและการปรับปรุง Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) การควบคุมแผนภูมิการทดสอบขึ้นอยู่กับค่าเฉลี่ยเคลื่อนที่ทางเรขาคณิต Technometrics, 1, 239-250
Bollinger   วง สำหรับ ดี
ธนาคาร   Negara   มาเลเซีย -forex- เรื่องอื้อฉาว