ชี้แจง เคลื่อนไหว ค่าเฉลี่ย คู่

ชี้แจง เคลื่อนไหว ค่าเฉลี่ย คู่

Forex- หนังสติ๊ก - 30m
พนักงาน การฝึกอบรม แผน แม่แบบ ฟรี
GX- อัตราแลกเปลี่ยน


หลัง การทดสอบ ของคุณ ซื้อขาย ระบบ Binary ตัวเลือก - ควีน รีวิว Dsu หุ้น ตัวเลือก โบนัส -forex- tanpa เงินฝาก 2012 Forex- gtcm ที่ดีที่สุด ตัวเลือก -trading- กลยุทธ์

ข้อสงสัยเกี่ยวกับ AUDIOPHILES อันเก่าแก่สำหรับระบบ HOME สุดยอดคุณลองวันเก่า ๆ มานานแล้วหรือยัง - คุณจำได้ไหมว่าเสียง JBL quotwallbangerquot เคาะที่ห้องครัวสไตล์อาร์ตเดคโคที่น่าเกลียดอยู่นอกกำแพงด้วยการบันทึก Mercurys Antal Dorati ของปี 1812 และทำให้เกิดเสียงโอ้และ ahhs จากเพื่อน dumbstruck ที่ไม่เชื่อหูของพวกเขาเมื่อได้ยินขนาดใหญ่ 35 วัตต์ต่อช่องและเสียงของ Bob Prescotts quotCartoons ใน Stereoquot ในปีพศ. 2504 พวกเราที่สามารถเกลียดภรรยาหรือพ่อแม่ของเราได้และใช้จ่ายเงิน 355.80 รวมทั้งค่าใช้จ่าย 10-12 ไม้ไม้อัดคุณภาพสูงเพื่อสร้างตู้ของเราเองขนาด 14 ลูกบาศก์ฟุตอาศัยอยู่ในความสุขด้วยความเชื่อที่ว่าฝาคู่ D130 และ 075 กระหน่ำดีเท่าลำโพงที่เคยต้องเป็น ระบบและบางวันถ้าเราเคยได้รับเงินภาษีมากเราอาจคิดเกี่ยวกับการเพิ่มคู่ของ 175DLHs เพื่อให้ระบบที่ดีที่สุด เราเป็นคนที่มีความสามารถทางด้านเสียงซึ่งเป็นผู้ที่มีอำนาจในการพิจารณาคดีสำหรับผู้ที่คิดว่าเราเป็นอัจฉริยะเนื่องจากเราสามารถเชื่อมต่อ Mac 60 และ preamp และตั้งค่าการทำให้แผ่นดิสก์ถูกต้องสำหรับแผ่นดิสก์ที่ตัด EQs ของ บริษัท แผ่นเสียงแต่ละแผ่น กลับไปแล้ว - ความอับอายของคนรักดนตรีที่ไม่ใช่วิศวกร ถ้าคุณชอบฉันเด็กวัยห้าสิบนับเป็นความทรงจำของคุณเกี่ยวกับระบบที่มีประสิทธิภาพสูงในช่วงต้นของคุณและทำให้คุณสงสัยว่าในทุกเรื่องเกี่ยวกับระบบลำโพง quotdigital-readyquot ล้วนเป็นเรื่องเกี่ยวกับอะไร ใช่แล้ว JBL เป็นแบบดิจิทัลพร้อมใช้งาน 45 ปีก่อนที่ Digital พร้อมแล้วแน่นอนว่าคุณยังสามารถรับ E130 และ 2402 (หมายเลขรุ่นปัจจุบันของส่วนประกอบเก่า) และหลอกตัวเองให้คิดว่าเป็นไฮไฟ แต่ถ้าคุณยังคงเป็น ปรับแต่งเสียงคุณได้ในปี 1961 ผลลัพธ์ของความคิดที่ล้าสมัยนี้จะทำให้รู้สึกไม่น่าดู - เสียงที่คุณจำไม่เคยดีพออีกต่อไป เสียงที่คุณเคยชินมีชีวิตอยู่กับความทรงจำของมันในมุมมองของสิ่งที่คุณอาจได้ยินในช่วง 45 ปีที่ผ่านมา แฟนเพลงของ Well wallbanger ตั้งแต่ปีพ. ศ. 2504 มีความคืบหน้าในการทำความเข้าใจประสบการณ์การฟังเหตุผลที่ระบบเสียงไม่เหมือนการแสดงสดและการปรับปรุงสถานการณ์ที่ลึกลับนี้อย่างไร เรารู้ว่าฮาร์ดแวร์ทั้งหมดทำงานได้ดีเพียงใดและเรารู้มากขึ้นว่าทำไมมีหลายวิธีในการสร้างระบบลำโพงที่ไม่ดี นักปรัชญาชาวเดนมาร์กอาจกล่าวว่าโควต้าเป็นเหมือนปรัชญาในทุกขั้นตอนที่ทำให้ผิวเก่า ๆ หลุดลอกออกไป ถ้าคุณต้องการใช้เทคโนโลยีชั้นยอดของคุณคุณจะต้องมีมุมมองที่แตกต่างไปจากการปรับปรุงการออกแบบที่ผ่านมา ไม่ทราบความจริงที่ว่าวิศวกรบันทึกเสียงในปัจจุบันมีผมสีเขียวและไม่สามารถอ่านเพลงได้และส่วนใหญ่ของสิ่งที่จะเข้าสู่รูปแบบของซีดีป๊อปจะเล็ดลอดออกมาจากกล่องโปรแกรม เป็นธรรมมีจำนวนมากของแผ่นซีดีที่บันทึกไว้พร้อมที่จะฟังและเหตุผลที่จะคาดหวังว่าเนื้อหาโปรแกรมที่ดีจะทำโดยผู้ที่ดูแลเกี่ยวกับเพลงและเสียงที่มีคุณภาพมากกว่าตลาดมวลทุก แม้ว่า JBL จะจำหน่ายชิ้นส่วนดิบไปยังตลาดที่เติบโตขึ้นอย่างต่อเนื่องนับตั้งแต่ยุค 50 บริษัท JBL เป็น บริษัท ที่ทำเสียงดังระดับมืออาชีพ (ระบบเสียงที่ติดตั้งอย่างถาวรระบบเสียงการเดินทางโรงภาพยนตร์และลำโพงเครื่องดนตรีและ ) ในช่วงหลายสิบปีที่ผ่านมาและนักการตลาด hi fi ได้ทำให้ประชาชนทั่วไปมีทางเลือกในการเลือกลำโพงที่พร้อมใช้งานจำนวนมากซึ่งสัดส่วนของยอดขายชิ้นส่วนดิบของ JBLs สู่ตลาด Hi Fi ได้ถูกบดบังไปถึงจุดที่สนับสนุนตลาดดังกล่าว ตอนนี้ไม่ได้ประโยชน์ JBL รักแฟนเพลงที่จงรักภักดี แต่เวลาที่ใช้ในการตอบคำถามนับพัน ๆ คำถามพวกเขาจะชดเชยยอดขายที่เกิดขึ้น อันเป็นผลมาจากการนี้และความจริงที่ว่าเกือบทุกสายของผู้บริโภคที่ได้รับจาก JBL Professional กำลังสอบถามข้อมูลในการสร้างระบบที่ดีที่สุด (แม้จะมีความพยายามของเราที่จะส่งคุณไปยัง Harman America และจำหน่ายคุณลำโพงที่ยอดเยี่ยม 250 ทีด้านบนของระบบลำโพงสำหรับผู้ใช้สาย) . ฉันตัดสินใจที่จะตอบคำถามทั้งหมดของคุณเป็นลายลักษณ์อักษรหวังว่าคุณจะโทรหาฉัน นี่คือสิ่งที่ฉันเองคิดว่าฉันจะทำอย่างไรถ้าฉันมีเงินเป็นจำนวนมากเพื่อใช้จ่ายในระบบที่บ้านของฉันและไม่สามารถชดเชยให้กับแพทย์ที่เป็นครั้งคราวด้วยระบบ KrellRowlandCello ที่มีราคาแพงสุด ๆ ของเขาซึ่งท้าทายความสามารถในการโม้ ความสามารถในการรับฟังเพลงจากคอมโพเน็นต์ต่างๆจำนวนมากไม่พอใจ audiophiles, bass freaks และ JBL hi-fi-time ได้เรียกและเขียน insisting ในคำแนะนำของฉันสำหรับระบบเล่นสเตอริโอในบ้านขนาดใหญ่ที่อาจส่งมอบความเป็นจริงทั้งหมด ของการขดตัวในตำแหน่งครรภ์ภายในกลองเตะร็อคแอนด์โรล ถึงแม้ว่าคุณจะได้รับประโยชน์จากการทำลายล้างการได้ยินด้วยตัวเอง แต่ฉันขอเสนอสิ่งที่ฉันคิดว่าเป็นทางเลือกที่มีประโยชน์สำหรับผู้ที่ต้องการจะจ้างวงดนตรีสดและ บริษัท ทัวร์เสียงเพลงเมื่อมีการกระตุ้นการได้ยินด้วยตัวเอง ระบบ quotdream อธิบายไว้ที่นี่ไม่ควรลอกสีออกจากผนังหรือใช้เป็นระบบ PA สำหรับห้องขนาดใหญ่กว่าอาคารแอสเซมบลีทั่วไปตามแนวตั้ง แต่ควรตอบสนองความต้องการของผู้ฟังที่มีการเปลี่ยนแปลงอย่างมากเช่น punkers disco-droids, rappers และ masochistic metal-rock ในขณะที่ยังคงให้ความละเอียดอ่อนอย่างเพียงพอสำหรับดนตรีในห้องพิสดารที่ละเอียดอ่อน Hogwood Brandenburg ประจำปีของคุณและระเบียนเอฟเฟ็กต์แมลงที่เป็นที่นิยมอย่างแพร่หลาย ระบบประกอบด้วย: 4 2245H ไดรเวอร์ลำโพงซับวูฟเฟอร์ 18 เครื่อ 2 2220H ไดรเวอร์ midbass 15 quot 2 2123H ไดรเวอร์ความถี่ระดับกลาง 10 quot 2 ไดรเวอร์บีบอัดแบบ 2445J 4 2300 แบนแตรด้านหน้า 2 แ่ห่ง 2405 ทวีทวีตเตอร์ไดนามิก 1 6290 เครื่องขยายเสียง 4 6260 เครื่องขยายเสียง 2 6230 เครื่องขยายเสียง 2 525 ครอสโอเวอร์ที่ใช้งาน 2 3105 passive crossover ค่าใช้จ่ายระบบทั้งหมดสำหรับส่วนประกอบเหล่านี้มีเพียงประมาณ 18,000 เท่านั้นเพื่อให้ฝุ่นละอองจากเอกสารการจำนองเก่าและเติมน้ำมันโรลสำหรับการเดินทางไปที่ธนาคารเป็นเวลานานในบ้านของคุณ เครื่องขยายเสียงที่ใช้ในการผลิตจะมีกำลังไฟ 1200 วัตต์สำหรับลำโพงวูฟเฟอร์ขนาด 18 วัตต์และ 1200 วัตต์สำหรับไดรเวอร์ mid-bass ขนาด 15 วัตต์และ 1200 วัตต์สำหรับไดรเวอร์ขนาดกลาง 10 วัตต์และ 600 วัตต์สำหรับไดรเวอร์บีบอัดและทวีตเตอร์ทั้งสองรุ่น พลังงานความต้องการรวมอยู่ที่ 4200 วัตต์ที่สะอาด นอกจากนี้ยังอาจเรียกร้องความต้องการจากคุณ - จากเพื่อนบ้านและตำรวจท้องที่ ตอนนี้ก่อนที่คุณจะหอบและโควต้า แตรทราบว่าทุกสิ่งทุกอย่างที่คุณได้ยินคือประวัติศาสตร์และส่วนใหญ่ไม่ถูกต้อง โมเดล 2382 เป็นคอหอยขนาด 2 นิ้วอุปกรณ์หลอดคลื่นขนาด 120 องศาที่มีอัตราการลุกเป็นไฟอย่างรวดเร็วและแท่งเสียง quothorn ที่ไม่มีอยู่จริงซึ่งเป็นผลมาจากคอหอยลำคอที่ไม่ใช่เชิงเส้นที่เกี่ยวข้องกับลำคอขนาดเล็กหนึ่งนิ้วและอัตราการลุกเป็นไฟลุกลามและเป็นนิสัย จะใช้ในระบบนี้เพื่อทำซ้ำความถี่ต่ำพอที่จะน่ารังเกียจต่อไป จดจำสำเนาแค็ตตาล๊อกของ JBL ในช่วงอายุหกสิบเศษ: wavefronts ของ quotSteep ของความดังของเสียงดังดังขึ้นโดยใช้แม่เหล็กและไดอะแฟรมขนาดใหญ่ 4 แรงเทียน เก็บใจที่เปิดกว้างหากคุณคาดหวังว่าจะได้รับรางวัลด้วยระดับความแรงของเสียงสูง หนึ่งในกฎหมายที่ไม่เปลี่ยนรูปที่คุณต้องทำอย่างน้อยสัมปทานบางอย่างเพื่อให้ได้รับประโยชน์บางอย่าง (เช่นระดับเสียงที่สูงมาก) ขออภัยคุณไม่สามารถเปลี่ยนแปลงกฎหมายฟิสิกส์กับเงินได้ เพื่อนบ้านของคุณเสียงสูง 7 ฟุตจะได้ยินเสียงเหมือนวิทยุทรานซิสเตอร์ 4 ตัวถัดจากระบบของคุณดังนั้นอย่าหยุดกัดเล็บและเขียนเช็ค คุณจะต้องสร้างหรือได้รับ (dont โทรหาเราเราไม่สามารถช่วย) cabinetry ที่จะให้ปริมาณภายในของลูกบาศก์ฟุต 20 สำหรับแต่ละคู่ของไดรเวอร์เสียงเบส 18quot, ตู้แยกต่างหากจาก 1.5 ลูกบาศก์ฟุตสำหรับแต่ละไดรเวอร์ midbass 15quot, ตู้ย่อยหรือตู้แยกต่างหากสำหรับลูกบาศก์ฟุตขนาด 0.3 ลูกบาศก์ฟุตและพื้นผิวสำหรับแตรและทวีตเตอร์ เรื่องทั้งหมด (หนึ่งสมาชิกซ้ายหรือขวาของคู่) อาจจะอยู่ระหว่าง 48 และ 60 นิ้วสูงประมาณ 5 ฟุตกว้างประมาณ 3 ฟุตลึกและจะมีน้ำหนักมาก สร้างเปลือกหุ้มแบบเบสต่ำจากชิ้นงานที่แข็งเช่นเครื่องเทคอนกรีตขนาด 6 นิ้วรอบ ๆ วงแหวนวูฟเฟอร์ที่ทำจากไม้อัดไม้เรียวฟินแลนด์ 14 ใบหรือใช้ไม้อัดและกาวสองชั้นโดยยึดติดกับกาวและสกรูลงได้ทุกที่ คุณสามารถตรวจจับเรโซแนนซ์ของแผงใดก็ได้เมื่อกดด้วยค้อนทุบขนาด 2 ปอนด์ของคุณบนแผงควบคุม เป้าหมายของเราคือการทำให้ตู้สำเร็จรูปแข็งเป็นคอนกรีตหรืออย่างน้อยที่สุดเท่าที่จะทำได้ โปรดจำไว้ว่าระบบจะฟังได้ดีขึ้นถ้าคุณสร้างสิ่งทั้งหมดลงในกำแพงกั้นเพื่อติดตั้งบนกำแพงดังนั้นคุณจึงควรมีสัญญาเช่าระยะยาวหรือเป็นเจ้าของบ้านที่คุณต้องการแก้ไข ขนาดกล่องภายในที่แน่นอนสำหรับเปลือกซับวูฟเฟอร์คือ 41 x 33.5 X 29 นิ้ว ด้าน 29 X 41 ใช้สำหรับติดตั้งวูฟเฟอร์ ช่องระบายอากาศประกอบด้วยช่อง 2 แผ่นขนาด 9.25 X 29 นิ้วติดตั้งอยู่ตรงกลางระหว่างตัววูฟเฟอร์ทั้งสองตัว อุโมงค์ระบายอากาศแบบรูเปิดนี้ทำหน้าที่ปรับแต่งสิ่งกีดขวางและรั้งแผงด้านข้าง พื้นที่เปิดของช่องระบายอากาศและอุโมงค์คือ 4.5 x 29 นิ้ว (ความกว้างของกล่อง) โดยมีความลึกรวม 10 นิ้ว ตกแต่งภายในกล่องทุกด้านด้วยชั้นไฟเบอร์กลาสหนาแน่นหนา 1 นิ้วหนาครึ่งปอนด์สำหรับการสะท้อนแสงภายใน ไม่มีประโยชน์และในความเป็นจริงอาจมีการเสื่อมสภาพในการทำงานถ้าใช้ไฟเบอร์กลาสจำนวนมาก ไฟเบอร์กลาสเพิ่มปริมาตรเสมือนลงในตู้ สวมหน้ากากและถุงมือเมื่อคุณเย็บเล่มสิ่งของรอบ ๆ ตัว (ยกเว้นกรณีที่คุณวางกล่องไว้ด้านนอกของกล่อง) หรือวางลงบนแผงภายในแล้วอาบน้ำเย็นเมื่อคุณเสร็จสิ้น บางทีคุณอาจไม่เคยคันและไอเป็นเวลา 1 สัปดาห์ คำเตือนสำหรับคนรักสัตว์: ถ้าคุณมีแมวคุณควรใช้หน้าปัดไก่ที่ปลายด้านในของท่อในตู้ลำโพงวูฟเฟอร์เพื่อป้องกันไม่ให้แมวแปลก ๆ เสียชีวิตจากเก้าชีวิตของพวกเขาเมื่อใช้ปืนใหญ่จาก 1812 การทาบทามปลุกให้ตื่นขึ้นมาจากการนอนหลับสบาย ๆ ภายในกล่อง สำหรับไดร์เวอร์ midbass คุณต้องสร้างตู้ที่แน่นหนาและปราศจากเสียงก้องเพื่อตั้งอยู่ด้านบนของตู้เสียงทุ้ม เมื่อล้างลงในผนังก็เป็นนิสัยถ้ากล่องของคุณไม่ตรงกับความกว้างและมิติความลึก มิติด้านในที่แน่นอนของตู้ midbass คือ 18.9 X 15.4 X 13.4 นิ้วและคุณต้องมีช่องระบายอากาศประกอบด้วยช่องขนาด X 5 นิ้วขนาด 2 นิ้วตัดวัสดุที่ทำจากวัสดุขนาด 34 นิ้วของแผ่นกันกระแทกซึ่งอยู่ใกล้ขอบขับ midbass . เช่นเดียวกันกับตู้ลำโพงวูฟเฟอร์ให้ใช้ชั้นไฟเบอร์กลาสกับผนังภายในของกล่อง ไดรเวอร์ midrange ถูกจัดวางไว้ในตู้ที่ปิดผนึกแยกต่างหากซึ่งมีขนาดภายใน 10.7 X 8.7 X 7.6 นิ้ว ตู้นี้ควรจะเรียงรายไปด้วยช่องใส่ไฟเบอร์กลาสที่เหมือนกันโดยมีชั้นพิเศษอยู่ด้านหลังของกล่อง ที่ดีที่สุดคือการสร้างสิ่งที่แนบมาไว้บนแผ่นบังโคลนแบนขนาดใหญ่เพื่อรองรับการติดตั้งไดร์เวอร์เนื่องจากเป็นขนาด 6/10 ของนิ้วที่ใหญ่กว่าขนาดความกว้างภายในของสิ่งที่แนบที่สมบรูณ์และต้องมีการกำหนดเส้นทางการบรรเทาทุกข์บางส่วนเพื่อให้ติดตั้งได้ดีและมั่นใจได้ว่า ตราอากาศดี แตรสามารถติดตั้งบนแผ่นกั้นแบบ 34 นิ้วที่ทำจากไม้เดียวกันและไม่ต้องการด้านหรือกล่องเพียงแผ่นกั้นด้านหน้าและวิธีการบางอย่างเพื่อสนับสนุนมันก็เพียงพอแล้ว หากคุณเป็นวิซาร์ดเสียงที่มีหูสีทองคุณอาจต้องการกำหนดเวลาในการรับสัญญาณเสียงเข้าที่ตำแหน่งการรับฟังของคุณเพื่อทำสิ่งนี้ทั้งหมดที่คุณต้องทำคือเลื่อนทวีตเตอร์กลับไปที่แตรที่แฉกด้านหน้าไปยังตำแหน่งที่ ด้านหลังของชุดประกอบแม่เหล็กสองดวงจะเรียงรายตามแนวตั้งและเคลื่อนย้ายชุดประกอบทั้งหมดไปข้างหน้าภายใน 3 นิ้วจากตำแหน่งของชุดประกอบแม่เหล็กของไดร์เวอร์ midrange หากคุณทำเช่นนี้และผนังกั้นหรือกำแพงแตรจะทำให้เงาของพื้นผิวที่ติดตั้งของไดร์เวอร์ขนาดกลางเพียงแค่ให้พื้นผิวที่หันหน้าไปทางทั้งหมด (ที่มีมุมมองของไดรฟ์เวอร์ midrange) ด้วย Sonex หรือเสียงที่มีลักษณะคล้ายกัน ทำเช่นเดียวกันที่ด้านบนของฮอร์น 2382 เพื่อให้ทวีตเตอร์ไม่ต้องพ่นเสียงลงบนพื้นผิวสะท้อนแสง การเชื่อมต่อระบบเมื่อคุณเสร็จสิ้นตู้และติดตั้งไดรเวอร์ทั้งหมดและแตรและทำทุกอย่างที่คุณสามารถเพื่อ assuage ครอบครัวของคุณว่าคุณไม่จำเป็นต้องช่วยเหลือจิตเวชผู้ป่วยนอกคุณสามารถขอทุกอย่างขึ้น เริ่มต้นด้วยการทำให้สายลำโพงออกมาจากสายที่หนักที่สุดที่คุณสามารถหาได้ - สายแบตเตอรี่ไม่ใหญ่เกินไปข้อดีเพียงอย่างเดียวคือสายสัญญาณราคาถูกกว่าสายลำโพงทั่วไปที่มักจะเป็นเกจ์ที่หนักกว่าที่ไม่มีวัดได้ จะได้รับการตีพิมพ์) ความแตกต่าง ตัดสายเคเบิลของคุณ 50 นานกว่าที่คุณคิดว่าคุณจะต้องใช้ความเร็วต่ำสุด แต่ต้องระวังในการหาแอมป์กำลังใกล้ลำโพงเพื่อไม่ให้มีสายเคเบิลยาวเพิ่ม ใส่สายเคเบิลของคุณอย่างระมัดระวัง (VLF, LF, MF, HF) ด้านซ้ายและด้านขวาและทำเครื่องหมายขั้วหากจำเป็นเพื่อให้คุณไม่สับสนและเป็นประโยชน์คุณควรจะรู้สึกถึงเครื่องหมายใด ๆ ในที่มืดหรือด้านหลัง ชั้นแอมป์ถ้าคุณกำลังทำงานในพื้นที่อับอากาศ ควรวางสายแอมป์ (ไขว้และตัวขยายกำลัง) ตามแนวปฏิบัติทางวิศวกรรมตรรกศาสตร์การข้ามสัญญาณและการเดินสายไฟลำโพงที่มุมขวาและการแยกพื้นที่ของแชสซีใด ๆ ตามความจำเป็นเพื่อป้องกันไม่ให้สายดินและสายรัด ควรเชื่อมต่อและต่อสายแอมป์ของคุณเพื่อไม่ให้มีเสียงดังรบกวนเพียงเล็กน้อย (เกี่ยวข้องกับลำโพงระบบความไวสูง) จากเครื่องขยายเสียงเมื่อตัวควบคุมเสียงเปิดกว้าง ควรตั้งครอสโอเวอร์ 525 เพื่อแบ่งไดรเวอร์ของซับวูฟเฟอร์ (VLF) และ midbass (LF) ที่ 100 Hz เครื่องขยายเสียง 6290 จะเชื่อมต่อกับคู่สายคู่ของแต่ละคู่สายและคู่สาย 6240s สองสายจะถูกเปลี่ยนเป็นโหมด mono แบบเชื่อมต่อและไดรฟ์หนึ่งในไดรเวอร์ midbass เอาต์พุต MF ของฟีด 525s แต่ละชุด 6260 ตั้งค่าเป็นโหมด mono แบบเชื่อมต่อซึ่งจะเชื่อมต่ออยู่ในทิศทางเดียวกับไดรเวอร์ระดับกลาง ความถี่การหารสำหรับไดรเวอร์ LF-MF ควรตั้งไว้ที่ 500 Hz เอาท์พุท HF ของเครื่องรุ่น 525 จะป้อนคู่สาย (เชื่อมต่อ) 6230 ที่ยังเหลืออยู่ซึ่งจะเป็นตัวป้อนสัญญาณแบบ passive อีกตัวหนึ่งของ 3105 ความถี่การแบ่งส่วน MF-HF ควรตั้งไว้ที่ 1200 Hz ไดรเวอร์บีบอัด 2445J เชื่อมต่อกับเอาท์พุทความถี่ต่ำของ 3105 แต่ละอันและทวีตเตอร์ 2405 ทุกตัวเชื่อมต่อกับเอาต์พุตความถี่สูงของไขว้ 3105 ดึงไดรเวอร์ midbass ขนาด 15 quot ในขั้วย้อนกลับจากไดรเวอร์ 18 แรงม้า ติดตั้งไดรฟ์เวอร์ midrange ในขั้วย้อนกลับไปยังไดร์เวอร์ midbass (ขั้วเดียวกันกับไดรเวอร์ 18 แรงม้า) แตรและทวีตเตอร์ผ่านสายรุ่น 3105s ควรเชื่อมต่อตามคำแนะนำสีแดงดำในแผ่นคำสั่งแบบไขว้ 3105 และมีสายเพื่อให้อินพุทไปที่ 3105 (ขั้วสีแดง) เป็นขั้วย้อนกลับจากไดรเวอร์ระดับกลางยกเว้นกรณีที่คุณมีการจัดตำแหน่งทางกายภาพ แตรและทวีตเตอร์ไปข้างหน้าไดรเวอร์ midrange ซึ่งในกรณีนี้คุณจะต้องพลิกขั้วของอินพุต 3105s (หมายเหตุ: รายการนี้อาจต้องใช้การปรับขนาดและการปรับค่าต่างๆรวมทั้งการทดสอบขั้วเพื่อให้ได้ลักษณะการหน่วงเวลากลุ่มที่ดีที่สุด) การจูนและการขยับหลังจากที่คุณวางทุกสิ่งทุกอย่างไว้ด้วยกันและล้างข้อมูลทั้งหมดในผนังห้องนั่งเล่นของคุณอย่างมืออาชีพคุณจะต้องได้รับเครื่องวิเคราะห์ความถี่ 13 โอห์มหรือวิศวกรเสียงที่มีและตั้งค่าทุกสิ่งอย่างถูกต้องโดยการปรับการควบคุมกำไรและอื่น ๆ หากคุณอาศัยอยู่ในเขตมหานครคุณอาจพบคนที่มีเครื่อง TEF ที่อยากรู้อยากเห็นมากพอที่จะวัดและปรับแต่งระบบที่ชอบซึ่งแทบไม่เคยเห็นมาก่อน ผมขอแนะนำให้คุณอย่าพยายามเล่นเพลงผ่านระบบจนกว่าการวัดและการปรับค่าบางอย่างอาจทำได้เพื่อที่คุณจะไม่มีโอกาสได้รับความเสียใจจากผู้ซื้อเมื่อระบบไม่ได้รับการปรับแต่งอย่างถูกต้องจะไม่ถูกต้อง หาก youve ใช้จ่ายเงินจำนวนมากนี้คุณเป็นหนี้ให้ตัวเองเพื่อเสร็จสิ้นงานอย่างถูกต้อง ขั้นตอนที่ดีที่สุดในการตั้งค่าที่ถูกต้องระหว่างเครื่องขยายเสียงทั้งหมดคือการใช้คลื่นเสียงสีชมพูที่กำหนดไว้อย่างชัดเจน หากใช้ตัวกรองความถี่แปดชั้นให้ใช้กฎของนิ้วหัวแม่มือที่ซับวูฟเฟอร์เป็นส่วนที่อ่อนไหวที่สุดของระบบดังนั้นจึงต้องใช้เป็นข้อมูลอ้างอิงระดับสำหรับส่วนประกอบอื่น ๆ กล่าวคือเปิดกล้องทั้งหมด แล้วเลี้ยว midbass midrange และ horns ตามลำดับจนระดับเสียงเหมือนที่พวกเขาจับคู่ ความสามารถในการวัดความสามารถในการตอบสนองต่อความถี่ของระบบการวัด TEF น่าจะเป็นวิธีที่ดีที่สุดในการตรวจสอบการตั้งค่าระบบที่เหมาะสมและเครื่องสามารถวัดพลังงานเวลาและความสามารถในการวัดเฟสทำให้ง่ายต่อการจัดองค์ประกอบต่างๆตามแกน Z ให้ฟังไปข้างหน้าหรือด้านหลัง ทฤษฎีการดำเนินงานปรัชญาของฉันในการออกแบบระบบลำโพงสอดคล้องกับ JBLs กล่าวอย่างชัดเจนว่ากำลังขับเสียงของระบบลำโพงในสนามที่มีการกระจัดกระจายและกระเพื่อมควรเป็นแบบแบนที่สุดเท่าที่จะเป็นไปได้ องค์ประกอบของไดรเวอร์แต่ละชิ้นควรมีขนาดเล็กกว่าความยาวคลื่นที่พวกเขาจะขอให้เผยแพร่ ฉันยังรู้สึกว่าไม่มีองค์ประกอบของระบบควรเน้นในระหว่างการทำงานในระดับการฟังทั่วไป สำหรับหลังและฉันเชื่อว่าเหตุผลที่สำคัญที่สุดฉันได้เลือก midbass และไดรเวอร์ระดับกลางที่มีประสิทธิภาพมากที่สุดพร้อมใช้งานเพื่อเริ่มต้นด้วยข้อดีของการปฏิบัติการในนามต่ำกว่าร้อยละ 1 ของความสามารถในการรับพลังงานที่ได้รับการจัดอันดับ คุณควรหาเมื่อฟังระบบนี้ว่ามีคุณภาพเสียงที่มีขนาดใหญ่กว่าชีวิตซึ่งทำให้การทำสำเนาของสัญญาณอินพุทมีรายละเอียดมากขึ้นและเผยให้เห็น นี่เป็นเพราะส่วนใหญ่จะมีความไวสูงของส่วนประกอบของระบบ แม้ว่าจะมีเหตุผลทุกประการที่ต้องการให้ไดรเวอร์ขนาดเล็กเพียงเครื่องเดียวในการสร้างคลื่นความถี่เสียงทั้งหมด แต่เรารู้จากประสบการณ์ตรงที่ไดรเวอร์ขนาดเล็กไม่สามารถจัดการกับพลังงานเพียงพอในการผลิตเอาต์พุตอะคูสติกที่เพียงพอ กรวยลำโพงขนาด 4 นิ้วจะต้องสามารถเคลื่อนไปมาได้ 4 ฟุตเพื่อให้อากาศถ่ายเทได้มากที่สุดเท่าที่ซับวูฟเฟอร์ในระบบนี้มีความสามารถในการเคลื่อนย้ายได้ นอกจากนี้ในช่วงความถี่ที่กว้างขึ้นหนึ่งไดรฟ์เวอร์มีการครอบคลุมมากขึ้นมันเป็นเรื่องที่ Doppler บิดเบือนเสียงที่ไม่เป็นอันตรายและไม่ดนตรีระคายเคืองที่เกิดจากการปรับความถี่สูงเสียงที่เกิดจากการเคลื่อนไหวไดอะแฟรมขนาดใหญ่ที่เกี่ยวข้องกับความถี่ต่ำพร้อมกัน การทำสำเนา คำตอบสำหรับการบิดเบือนของ Doppler และความสามารถในการจัดการกำลังไฟฟ้าคือการแบ่งสเปกตรัมความถี่เสียงเป็นคลื่นซึ่งแต่ละส่วนจะเป็นส่วนเล็ก ๆ ของพลังงานที่ต้องการทั้งหมดและแต่ละอันจำเป็นต้องใช้ไดรเวอร์ที่มีขนาดเล็กเพียงน้อยนิดเพื่อเผยแพร่ความยาวคลื่นที่มีขนาดเล็กลงตามลำดับ . สาระสำคัญของการทำงานของระบบคือความสามารถในการติดตามความคืบหน้าซึ่งในซอฟต์แวร์ดนตรีที่ได้รับการบันทึกเสียงจะมีระดับสูงสุด 20 ถึง 30 เดซิเบลมากกว่าพลังงานเฉลี่ยที่ใช้เล่นในระดับการฟังที่เหมาะสม ลำโพงที่มีประสิทธิภาพลดลงทำให้ความร้อนของขดลวดเสียงและการบีบอัดเอาท์พุทตามมาจากแหล่งอินพุตกำลังแรง ความคิดของฉันคือการที่ลำโพงจะทำซ้ำสัญญาณเสียงขาเข้าอย่างเที่ยงตรงต้องอยู่ในช่วงเวลาแต่ละครั้งทำราวกับว่าสัญญาณเป็นสัญญาณแรกที่ได้รับนั่นคือเป็นไปไม่ได้ที่ลำโพงจะมีความถูกต้องหากสัญญาณที่ทำซ้ำเพียงแค่เปลี่ยน ลำโพงหรือไฟฟ้าหรือลักษณะทางกลโดยการอุ่นขดลวดเสียงหรือยืดวัสดุที่ใช้งานที่ทำขึ้นสำหรับลำโพงที่เคลื่อนที่ส่วนต่างๆ ในกรณีของลำโพงไฟฟ้าสถิตการสูญเสียเกิดขึ้นเนื่องจากความสามารถในการใช้กำลังไฟและการเคลื่อนไหวที่ จำกัด ลำโพงไฟฟ้าสถิตยังมีประสิทธิภาพต่ำมาก การแก้ปัญหาคือการทำให้ระดับพลังงานอินพุทอยู่ในระดับต่ำเพื่อให้ความร้อนลดลงและในการทำเช่นนี้จำเป็นต้องใช้ไดรเวอร์ที่มีประสิทธิภาพสูงเป็นองค์ประกอบของระบบ ข้อเสียของไดรเวอร์ที่มีประสิทธิภาพสูงก็คือพวกเขาครอบคลุมวงความถี่ที่แคบลงเมื่อมีประสิทธิภาพเพิ่มขึ้น ในทางตรงกันข้ามไดรเวอร์แบบแบนวิดท์วิดท์กว้าง (JBL LE8 เป็นตัวอย่าง) มักมีประสิทธิภาพต่ำ - เป็นการแสดงออกโดยตรงของกฎหมายทางกายภาพ คุณอาจสงสัยว่าเหตุใดจำเป็นที่จะต้องมีเครื่องขยายเสียงขนาด 600 วัตต์เชื่อมต่อสำหรับคนขับที่จะทำงานในนามที่กำลังวัตต์ ช่วงเสียงต่ำกว่า 20 เดซิเบลดนตรีจำเป็นต้องใช้พลังงาน 100 เท่าของสัญญาณเฉลี่ยและจุดสูงสุด 30 เดซิเบลต้องใช้พลังงาน 1000 ตัวโดยสัญญาณเฉลี่ย กำลังการผลิตเอาต์พุต 600 วัตต์ของเครื่องขยายเสียงซึ่งขับขี่ให้กับหน่วย midbass มีค่าน้อยกว่า 28 เดซิเบลมากกว่า 1 วัตต์สำรองกำลังการผลิตสำหรับการวัดค่าช่วงความถี่ หากคุณเป็นพัดลมลำโพงไฟฟ้าสถิตหรือลำโพง Bi-polar คุณจะเกลียดเสียงระบบนี้จนกว่าคุณจะคุ้นเคยกับมันหลังจากนั้นคุณจะเกลียดชนิดของไฟฟ้าสถิตและสองขั้ว ความคล้ายคลึงกันของผลการรับรู้ก็คือระบบประเภทนี้ (ชนิดที่มีประสิทธิภาพสูง) ก็เหมือนกับการถอดคอมเพรสเซอร์อิเล็กทรอนิกส์ออกจากระบบลำโพงที่ดีเป็นอย่างอื่น มีจุดบอดที่จะต้องเป็นเสียงแหลมคมหรือเสียงแหลมคมจากแหล่งกำเนิดเสียงใด ๆ ที่ไม่ใช่จุดที่เรียบง่ายในพื้นที่ แต่โดยการจัดองค์ประกอบของระบบในแนวตั้งแบบแนวตั้ง (ยกเว้นไดรฟ์เวอร์ซับวูฟเฟอร์) เวลาในแนวนอนและภาพจะถูกตัดออก . มนุษย์ไม่รับรู้ถึงเวลาในแนวตั้งและภาพที่มีรอยเปื้อนจนกว่าพวกเขาจะกระโดดขึ้นและลงต่อหน้าลำโพง - การปฏิบัติที่ฉันไม่แนะนำสำหรับการฟังที่สำคัญ (แบ่งความสนใจของคุณ) ตั้งแต่ลำโพงของ JBL แต่ละตัวจะถูกจับคู่กันอย่างใกล้ชิดในเรื่องของการปฏิบัติด้านการผลิตภาพสเตอริโอของระบบจะดูงดงาม ข้อจำกัดความรับผิดชอบ: คำเตือนโดยละเอียดระบบที่อธิบายไว้ในที่นี้สามารถสร้างระดับความกดดันได้ไกลเกินกว่าที่จะทำให้สูญเสียการได้ยินกลับไม่ได้ คุณอาจประสบปัญหาการสูญเสียการได้ยินอย่างถาวรไม่เพียง แต่ยังคงมีเสียงดังอยู่ในหูซึ่งอาจทำให้เกิดอาการนอนไม่หลับและนำไปสู่ความผิดปกติทางระบบประสาทหรือปัญหาทางอารมณ์ได้ JBL และนักเขียนคนนี้ไม่ได้อ้างสิทธิ์และไม่มีส่วนรับผิดชอบต่อการออกแบบการดำเนินงานหรือผลของการใช้ระบบที่อธิบายไว้ที่นี่ 1988 Drew DanielsDistortion ในเครื่องขยายเสียงพลังงาน ความผิดเพี้ยนที่เกิดขึ้นจากเครื่องขยายเสียงคลาสสิกแบบ solid-state Class-B แสดงให้เห็นว่าประกอบด้วยกลไกทั้งแปดซึ่งทั้งหมดอาจมีอยู่ร่วมกันและผลิตภัณฑ์ที่บิดเบี้ยวทับซ้อนกันเพื่อให้ได้ผลลัพธ์ที่ซับซ้อน วิธีการแยกแต่ละกลไกเพื่อการศึกษาและการลดผลงานจะได้รับ หากการบิดเบือนที่หลีกเลี่ยงได้รับการออกแบบออกมาแอมพลิฟายเออร์ Class-B ของการบิดเบือนต่ำผิดปกติ (ต่ำกว่า 0.0005 ที่ 1kHz, 0.003 ที่ 10 kHz) อาจได้รับการออกแบบเป็นประจำและไม่มีค่าใช้จ่ายเพิ่มเติมอย่างมีนัยสำคัญ เครื่องขยายเสียงดังกล่าวกำหนดเกณฑ์การบิดเบือนและฉันได้ตั้งชื่อให้พวกเขาเป็นเครื่องขยายเสียงไร้ตำหนิ คลิกด้านล่างเพื่อไปตรงไปยังส่วน คลิกที่รูปสำหรับเวอร์ชันเต็มรูปแบบ C O N T E N T S 0: บทนำ 1: การกำหนดค่าเครื่องขยายเสียงทั่วไป 2: แปดบิดเบือน 3: สามการบิดเบือนที่ไม่มีอยู่จริง 4: เทคนิคสำหรับการสืบสวนเครื่องขยายเสียง 5: กลไกการบิดเบือน 6: แนวคิดของเครื่องขยายเสียงไร้ตำหนิ 7: ข้อสรุป อ้างอิง รายละเอียดเพิ่มเติมเกี่ยวกับการบิดเบือนและเรื่องอื่น ๆ สามารถพบได้ในหนังสือที่ฉันจนได้รอบการเขียน: 0 บทนำ เมื่อพิจารณาถึงความสำคัญทางเศรษฐกิจของเครื่องขยายเสียงแล้วข้อมูลที่น่าเชื่อถือเล็กน้อยได้รับการตีพิมพ์ในการออกแบบของพวกเขา การบิดเบือนโดยเฉพาะอย่างยิ่งได้รับการละเลยแม้ว่าจะเป็นคุณลักษณะที่แปรผันมากที่สุดของประสิทธิภาพของเครื่องขยายเสียง คุณอาจจะมีหน่วยวางอยู่ 2 ชุดโดยให้พลัง 2 แรงเทียนและอีก 0.0005 ที่เต็มกำลังและทั้งคู่อ้างว่าให้ประสบการณ์การรับฟังเสียงยอดเยี่ยม ผมได้ตรวจสอบต้นกำเนิดของการบิดเบือนในช่วงปี 2535-37 และได้พิจารณาแล้วว่าการบิดเบือนเครื่องขยายเสียงเป็นสิ่งที่ยากและลึกลับในการต่อสู้กับการควบรวมของกลไกพื้นฐานแปดอย่างที่ซ้อนทับและบางครั้งก็ยกเลิกไปโดยให้ผลที่ซับซ้อน ฉันพัฒนาวิธีการวัดและลดกลไกการบิดเบี้ยวแต่ละแบบแยกกันและผลที่ได้คือวิธีการออกแบบสำหรับการสร้างเครื่องขยายเสียง Class-B หรือ Class-A ที่มีประสิทธิภาพในการบิดเบือนให้ดีแล้วเมื่อสองหรือสามปีที่ผ่านมาถือว่าเป็นไปไม่ได้ 0.0008 ที่ 1 kHz และ 0.003 ที่ 10 kHz สามารถรับได้ง่าย วิธีการนี้ให้ผลลัพธ์ที่เชื่อถือได้และสามารถทำซ้ำได้โดยมีจำนวนข้อเสนอแนะเชิงลบที่เพิ่มขึ้นในระดับปานกลางและต้นทุนไม่สำคัญ 1. การกำหนดรูปแบบของตัวประมวลผลแบบองค์รวม (GENERIC AMPLIFIER CONFIGURATION) รูปที่ 1a แสดงวงจรของวงจรขยาย Lin ทั่วไปโดยมีอินพุตขาเข้าสากลที่แตกต่างกันซึ่งแสดงถึง 98 ชิ้นของเครื่องขยายเสียงที่เคยสร้างมา เป็นจุดเริ่มต้นที่ชัดเจนสำหรับการตรวจสอบเครื่องขยายเสียง 1 รูปที่ 3 แสดงพล็อตการบิดเบือนของมันมีสองรูปแบบการบิดเบือน ต่ำกว่า 1 kHz THD ต่ำที่ 0.002 แต่ไม่เป็นศูนย์พื้นเสียงรบกวนเท่ากับ 0,0006 ที่ความสูงกว่า 1 กิโลเฮิร์ทซ์ THD จะค่อยๆเพิ่มขึ้นเป็นสี่เท่าโดยมีแต่ละคู่และถึง 0.5 ก่อน 20 kHz โทโพโลยีเป็นตัวนำกระแสไฟฟ้า (transconductance amplifier) ​​(แรงดันไฟฟ้าแตกต่างอินพุท, กระแสเอาท์พุท) ขับเคลื่อนทรานซิสเตอร์ (current-to-voltage converter) เครื่องขยายสัญญาณแรงดันไฟฟ้าตามด้วยบัฟเฟอร์ power gain ความสามัคคี แรงดันไฟฟ้าที่ฐานทรานซิสเตอร์ VAS โดยทั่วไปจะมีเพียงไม่กี่มิลลิิวโวลต์และมีความสนใจน้อยในตัวของมันเองคือกระแสที่ไหลผ่านจากขาเข้าสู่ VAS ที่นับ โทโพโลยีนี้มีข้อดีหลายอย่างรวมทั้งค่าตอบแทนที่เรียบง่าย 2 Top Contents Section 3 2. ความผิดเพี้ยนแปดครั้ง กลไกการบิดเบือนของเครื่องขยายเสียงทั่วไปจะแบ่งออกเป็นแปดประเภทพื้นฐาน การบิดเบือน 3 เกิดขึ้นจากระยะออกซึ่งแบ่งออกเป็น 3 กลไก 3a, 3b, 3c ที่ไม่เหมือนกัน ในทำนองเดียวกันการบิดเบือน 8 ปกติเกิดขึ้นเฉพาะในตัวเก็บประจุที่ด้านล่างแขนข้อเสนอแนะ แต่ในการออกแบบ AC คู่ตัวเก็บประจุออกอาจทำให้เกิดการบิดเบือนอย่างมีนัยสำคัญ การจำแนกนี้ไม่ถือว่าไม่มีการตัด, การโอเวอร์โหลด, การ จำกัด การสังหารหรือกาฝาก 1 ขั้นตอนอินพุท (สมดุล) ดังนั้น THD ที่ 1.47 เท่าเมื่อได้รับ (.00404) เมื่อลดขนาดเพื่อให้ได้ค่า CL ที่สมจริงเท่ากับ 23 จะลดลงจาก (231.47) 2 245 ทำให้มีค่า 0.000017 ที่ 15 kHz เล็กน้อย 3.3 การบิดเบือนความร้อน การบิดเบือนความร้อนบางครั้งอธิบายว่าเกิดจากการเปลี่ยนแปลงอุณหภูมิของ cyclic ที่ความถี่สัญญาณ modulating พารามิเตอร์ของอุปกรณ์ นี่เป็นปัญหาที่แท้จริงของวงจรรวมด้วยอุปกรณ์อินพุตและเอาต์พุตในความใกล้เคียงความร้อนใกล้เคียง แต่ในเครื่องขยายสัญญาณแบบแยกส่วนไม่มีการเชื่อมต่อดังกล่าวและไม่มีการบิดเบือนดังกล่าว การบิดเบือนความร้อนจะคาดว่าจะเพิ่มขึ้นในการบิดเบือนความสามัคคีที่สองหรือสามที่ความถี่ต่ำมากและผลกระทบที่ใหญ่ที่สุดจะอยู่ในขั้นตอนการส่งออกของ Class-B ซึ่งการกระจายจะแตกต่างกันไปในแต่ละรอบ ผลทั้งหมดหายไป นี่อาจเป็นเพราะไดรเวอร์และอุปกรณ์ส่งออกมีทางแยกขนาดใหญ่ที่มีความเฉื่อยเชิงความร้อนสูง ทรานซิสเตอร์ไดร์เวอร์ MJE340 มีพื้นที่ชิพสี่เท่าของ TL072 ดังนั้นพารามิเตอร์ต่างๆเช่น Vbe คงไม่สามารถเปลี่ยนแปลงได้มากถึง 10 Hz ปัจจัย NFB ทั่วโลกมีค่าสูงสุดที่ LF ใช้วิธีการออกแบบของฉันเครื่องขยายเสียงสามารถออกแบบได้อย่างตรงไปตรงมาเพื่อผลิตน้อยกว่า 0.0006 THD ที่ 10Hz (150W8-Ohm) โดยไม่พิจารณาการบิดเบือนความร้อนนี้แสดงให้เห็นว่าไม่ใช่ปัญหา THD แผนการเพิ่มขึ้นที่ความถี่ต่ำเป็นเรื่องปกติ แต่ฉันพบว่าการเพิ่มขึ้นของ LF อาจถูกตัดออกโดยการแก้ไขการแบ่งตัวที่ผิดพลาด (Distortion 5) หรือการเพิ่มตัวเก็บประจุข้อมูลย้อนกลับ (Distortion 8) ในฐานะที่เป็นอาร์กิวเมนต์เพิ่มเติมให้พิจารณาการบิดเบือนที่เหลืออยู่ของเครื่องขยายเสียงคลาส B โดยใช้ CFP output เพื่อให้ความลำเอียงที่ไม่เสถียรขึ้นอยู่กับอุณหภูมิของไดรเวอร์เพียงอย่างเดียว เมื่อพลังคลื่นไซน์ถูกส่งไปยังโหลดครอสโอเวอร์จะมีการเพิ่มขึ้นของความหนาแน่นของ THD ที่ลดลงอย่างช้าๆในช่วงสองสามนาทีเนื่องจากคนขับอุ่นขึ้น ความสูงของ spikes เหล่านี้จะบ่งบอกอุณหภูมิของโปรแกรมควบคุมอย่างต่อเนื่องและการเปลี่ยนแปลงที่ช้าจะแสดงถึงเวลาที่ใช้ในการระบายความร้อนเป็นเวลาหลายสิบวินาทีและการตอบสนองที่ไม่สำคัญที่ 10Hz 4.1 การเพิ่มขึ้นของลูปเปิดและการวัด ประสิทธิภาพในการบิดเบือนวงปิดของเครื่องขยายเสียงเป็นผลมาจากความเป็นเส้นตรงแบบลูปเปิดและค่าลบ สำหรับการรับลูปปิดแบบคงที่ปัจจัย NFB จะกำหนดโดยการรับลูปเปิดและการเปลี่ยนแปลงของมันด้วยความถี่ การเปลี่ยนแปลงวงจรทั่วไปเช่นการเปลี่ยนค่าของ R2 ในรูป 1a จะเปลี่ยนการรับลูปแบบเปิดและความเป็นเส้นตรงและจำเป็นอย่างยิ่งที่จะทราบว่าการเปลี่ยนแปลงที่สังเกตได้เป็นผลมาจากการปรับปรุงเส้นเอ็น OL หรือเพิ่มการเพิ่มขึ้นของ OL เพียงเล็กน้อย ดังนั้นความต้องการวิธีการที่รวดเร็วและสะดวกในการวัดผลประโยชน์ของ OL วิธีมาตรฐานสำหรับการได้รับลูปเปิด op-amp เกี่ยวข้องกับการแบ่งลูปข้อเสนอแนะและการจัดการกับผลประโยชน์ของลูปปิด (CL) ขั้นตอนที่ไม่น่าจะประสบความสำเร็จกับเครื่องขยายเสียงเฉลี่ย สำหรับเครื่องขยายเสียงทั่วไปในรูปที่ 1 การรับลูปเปิดคือแรงดันขาออกหารด้วยแรงดันต่างกันที่อินพุท ถ้าการตอบสนองความถี่ของ CL เป็นไปอย่างราบเรียบจะได้รับพล็อตการเพิ่มค่าความถี่แบบเปิดรอบเมื่อเทียบกับความถี่โดยการวัดแรงดันไฟฟ้าระหว่างแรงดันไฟฟ้าและอ้างอิงกับระดับเอาท์พุท ซึ่งจะช่วยให้พล็อตคว่ำลงที่ HF แทนที่จะลดลงเนื่องจากเครื่องขยายเสียงต้องการแรงดันไฟฟ้าผิดพลาดมากขึ้นสำหรับเอาต์พุตเช่นเดียวกับการเพิ่มความถี่ รูปที่ 2 แสดงให้เห็นถึง OL gain ของเครื่องขยายเสียงในรูปที่ 1 ให้ใช้ชุดทดสอบที่มีอินพุตที่สมดุลสูง CMRR วิธีง่ายๆคือบัฟเฟอร์ตัวรับสัญญาณที่แตกต่างกันจากสายเคเบิ้ลที่มีตัวยึดแรงดันไฟฟ้า TL072 ซึ่งทำให้โหลดได้ไม่สำคัญในวงจรและวัดระดับ เกี่ยวกับการส่งออก เครื่องทดสอบ CMRR กำหนดความสามารถในการวัดค่าลูปเปิดได้สูงสุด Audio Precision System-1 ทำงานได้ดีที่นี่ พล็อตการสอบเทียบ (รูปที่ต่ำกว่าในรูปที่ 2) ถูกสร้างขึ้นโดยให้ป้อนข้อมูลบัฟเฟอร์สองชุดจากสัญญาณเดียวกันซึ่งจะเพิ่มขึ้นที่ 6dBoctave เนื่องจากการวัดค่าการสุ่มตัวอย่างของเครื่องทดสอบและต้องมีอย่างน้อย 10 dB ภายใต้สัญญาณผิดพลาดของเครื่องขยายเสียงเพื่อความถูกต้อง เส้นโค้งแบนออกที่ LF และอาจเพิ่มขึ้นเนื่องจากความไม่สมดุลของตัวเก็บประจุที่ป้อนเข้าบล็อคการทดสอบนี้ทำให้การกำหนดตำแหน่งต่ำสุด P1 ยาก แต่ P1 ไม่ใช่พารามิเตอร์ที่สำคัญในตัวเอง 4.2 Amplifiers แบบจำลอง ส่วนสัญญาณเล็ก ๆ แบบเส้นตรงเป็นจุดเริ่มต้นที่ชัดเจนสำหรับเครื่องขยายเสียงที่มีการบิดเบือนต่ำ Distortions 1 และ 2 สามารถควบคุมสมรรถนะของเครื่องขยายเสียงได้อย่างรวดเร็วและต้องได้รับการศึกษาโดยปราศจากภาวะแทรกซ้อนของขั้นตอนการส่งออก Class-B วงจรจะลดลงเป็นเครื่องขยายเสียงรุ่นที่ประกอบด้วยขั้นตอนการป้อนข้อมูลและ VAS เท่านั้นรวมถึงผู้ติดตามอีเทอร์เน็ตคลาส A มากเป็นระยะการส่งออกเพื่อขับเคลื่อนเครือข่ายตอบรับโดยไม่มีการโหลดภายนอก รูปแบบที่นี่หมายถึงกระแสที่ลดลงมากกว่าแรงดันไฟฟ้า เครื่องขยายเสียงรุ่นควรมีความสามารถในการแกว่งแรงดันไฟฟ้าแอมป์ได้เนื่องจากการบิดเบือนคู่ของอินพุตจะขึ้นอยู่กับระดับเอาท์พุทที่แน่นอนและไม่ใช่สัดส่วนของแรงดันไฟฟ้าที่เกิดจากราง เครื่องขยายเสียงรุ่นที่ไม่มีขั้นตอนการส่งออกช้าสามารถให้ผลในแง่บวกที่ทำให้เข้าใจผิดเกี่ยวกับความมั่นคงของ HF เครื่องขยายสัญญาณแบบ NFB ที่มีเสถียรภาพสูงในตัวขยายสัญญาณแบบสามารถไม่เสถียรเมื่อมีการเพิ่มเอาท์พุทจริง ค่าของ Cdom ควรเป็นที่คาดการณ์ไว้สำหรับเครื่องขยายเสียงที่สมบูรณ์ แผนผัง THD ทั่วไปจากแอมป์แบบแอ็พพลิเคชันในรูปที่ 1 ขึ้นกับความลาดชันที่สูงชันเนื่องจากการเพิ่มขึ้นครั้งแรกที่ 6dBoctave จาก VAS มีส่วนทำให้เกิดการบิดเบือน 12dBoctave ขึ้นจากระยะป้อนข้อมูลที่ไม่สมดุล (ดูข้อ 5.1.2) 4.3 การจำลอง SPICE This is a powerful technique I use PSpice. SPICE gives insight into the open-loop linearity of both input and output stages, but applying it to the VAS is problematical as BJT Early Effect is implemented as a linear approximation. This seems unlikely to give accurate results for a stage with a large signal on its collector. Section 3 Contents Section 6 5. THE DISTORTION MECHANISMS. 5.1 DISTORTION 1. Input Pair Non-linearity The input differential pair implements one of the few forms of distortion cancellation that is truly reliable- the transconductance of the input pair are determined by transistor physics rather than matching of variable parameters such as beta. The logarithmic relation between Ic and Vbe is proverbially accurate over eight or nine decades of collector current. The prime motivation for using a differential pair as the input stage of an amplifier is its low DC offset. Apart from cancellation of the Vbe voltages, it has the extra advantage that the standing current does not flow through the feedback network. A second powerful reason, which seems less well-known, is that linearity is far superior to single-transistor input stages. Transconductance (gm) is maximal at Vin0, when the two collector currents are equal, and this maximum is proportional to the tail current Ie. 4 Device beta does not figure in the equation, and linearity of the input pair is not significantly affected by transistor type. The transconductance plot in Fig 4 shows the linearising effect of local feedback (emitter degeneration) on the voltage-incurrent-out law it plots transconductance against input voltage and demonstrates how emitter degeneration reduces peak transconductance, flattening the curve over a wider input range. Emitter degeneration markedly improves input stage linearity, but the overall amplifier NFB factor is reduced, for the vital HF closed-loop gain is determined solely by input-stage transconductance and the value of the dominant-pole capacitor. (Eqn 2) FETs seem a poor idea for the input stage. The basic gm is so low compared with BJTs that there is little scope for linearisation by adding source resistors for local degeneration, so an FET input stage will be very non-linear compared with a BJTs degenerated down to the same transconductance: see 5.1.3. Curve A in Fig 5 shows the distortion plot for a model amplifier, (5 Vrms output) designed so all distortion is negligible apart from that from the input stage with a class A output this simply means ensuring that the VAS is properly linearised. Note the vanishingly low LF distortion. For R2 10K, distortion is below the .001 noise floor until it emerges at 1 kHz, rising steeply at 12 dBoctave. This rapid increase is due to the input stage signal current doubling every octave, to feed Cdom therefore the associated second harmonic distortion doubles with each octave increase. Simultaneously the overall NFB available to linearise this distortion falls at 6dBoctave, and the combined effect is an quadrupling or 12 dBoctave rise. If the input stage is properly balanced, only third harmonic is generated, which quadruples rather than doubling as amplitude doubles, resulting in a 18 dBoctave slope however this only appears much further up the frequency range, and the total distortion produced is much less. If the VAS or output stage generates distortion it rises at only 6dBoctave, and looks quite different. 5.1.1 Input stage distortion in isolation. For serious research we need to measure input-stage non-linearity open-loop and in isolation. This is simply done with the test circuit of Fig 6. The current-to-voltage conversion op-amp uses shunt feedback to generate an AC virtual-earth at the input-pair output, and uses a third -30V rail to allow the ip pair collectors to work at a realistic DC voltage just above the V- rail the 10K feedback resistor may be scaled to prevent op-amp clipping. Input DC balance is set by the 10K pot the THD residual diminishes as balance is approached, until the second- harmonic is nulled, leaving almost pure third harmonic. 5.1.2 Input stage balance. Exact DC balance of the input differential pair is essential for minimum distortion. It seems almost unknown that even minor deviations from equality of collector current (Ic) in the input devices seriously upset the 2nd-harmonic cancellation, by moving the operating point from A to say, B, in Fig 4. The gm is both less and changing faster at B, so imbalance reduces open-loop gain as well as increasing distortion. The effect of small amounts of Ic imbalance is shown in Fig 7 Table 3 with an input of -45dBu an Ic imbalance of only 2 seriously worsens linearity, THD increasing from 0.10 to 0.16, while for 10 imbalance this deteriorates to 0.55. Ic balance needs an accuracy of 1 or better for lowest distortion at HF, where the input pair works hardest. Imbalance in either direction gives similar results. This explains the complex distortion changes that accompany the apparently simple experiment of altering the value of R2. We might design an input stage as in Fig 8a, where R1 has been selected as 1K by uninspired guesswork and R2 made high at 10K in a plausible but misguided attempt to maximise OL gain by minimising TR2 collector loading. R3 is also 10K to give the stage a notional balance unhappily this is a visual rather than electrical balance. The asymmetry is shown in the resulting collector currents this design generates a lot of avoidable second harmonic distortion, displayed in the 10K curve of Fig 5. Recognising the crucial importance of Ic balance, the circuit can be rethought as Fig 8b. If the collector currents are to be equal, R2 must be twice R1, as both have about 0.6V across them. The dramatic effect of this simple change is shown in the 2K2 curve of Fig 5 the improvement is accentuated as OL gain has also increased by some 7 dB, though this has only a minor effect on the closed-loop linearity compared with the improved input stage balance. R3 has been removed as it contributes nothing to input balance. The input pair can be approximately balanced by the correct values for R1 and R2, but we remain at the mercy of several circuit tolerances. The current-mirror configuration in Fig 8c forces the two collector currents very close to equality when global NFB is applied, giving excellent cancellation of the second harmonic the great improvement is seen in the current-mirror curve of Fig 5. A simple mirror has well- known Ib errors but they are not large enough to affect distortion. The hyperbolic-tangent law also holds for the mirrored pair, 5 but the output current swing is twice as great for the same input voltage. This doubled output is at the same distortion as a perfectly-balanced non-mirror input, as linearity depends on the input voltage, which has not changed. Putting a current-mirror in a well-balanced input stage therefore increases the total OL gain by at least 6dB, and possibly by up to 15dB if the stage was previously poorly balanced the compensation by Cdom must allow for this. Another happy consequence is that slew-rate is roughly doubled, as the input stage can now source and sink current into Cdom without wasting some in resistive collector load R2. If Cdom is 100pF, the slew-rate of Fig 9a is about 2.8Vusec up and down, while 9b gives 5.6Vusec. The unbalanced pair at Fig 8a displays further vices by giving 0.7Vusec positive-going and 5Vusec negative-going. A discrete current-mirror needs its own emitter-degeneration for accuracy. A voltage-drop across the mirror emitter-resistors of 60mV is enough to make the effect of Vbe tolerances negligible without degeneration there is significant variation in HF THD with different transistor specimens. To summarise, the advantages of a mirrored input stage are that second-harmonic distortion is eliminated, and maximum slew-rate is doubled. 5.1.3 Improving input-stage linearity. Even if the input pair has a current-mirror, HF distortion can still be excessive once it emerges from the noise floor it octuples with each doubling of frequency, and so it is well worth postponing the evil day until as far as possible up the frequency range. Input stage transconductance increases with Ic, so it is possible to raise gm by increasing the tail-current, and then reduce it back to its previous value (otherwise Cdom must be increased to maintain stability) by applying local NFB in the form of emitter-degeneration. This greatly improves input linearity, despite its rather unsettling flavour of something-for-nothing. Input transistor non-linearity can be regarded as an internal non-linear emitter resistance re, and we have reduced the value of this (by increasing Ic) and then replaced the missing part with a linear external resistor Re. The original input stage in Fig 1 has a per-device Ic of 600uA, giving a differential (ie, mirrored) gm of 23 mAV and re 41.6 Ohm. The improved version in Fig 9b has Ic 1.35mA and so re 18.6 Ohm emitter degeneration resistors of 22 Ohm are added to reduce gm back to its original value, as 18.6 22 is approx 41.6 Ohm. The THD measured by the circuit of Fig 6 for a -40dBu input voltage falls from 0.32 to 0.032, an extremely valuable linearisation which translates into an HF distortion reduction of about 5 times for a complete Class-B amplifier the full advantage is rarely gained. The remaining distortion is still visually pure third-harmonic if the input pair is balanced. The reduction of re is limited by the need for practical values of tail current. As a further benefit, increasing the tail current also increases slew rate. 5.2 DISTORTION 2 The Voltage-Amplifier Stage (or VAS) is often regarded as a critical part of a power-amplifier. It provides all the voltage gain and simultaneously the full output voltage swing. However, as is not uncommon in audio, all is not quite as it appears. A well-designed VAS stage contributes relatively little to the total distortion of an amplifier if even the simplest steps are taken to linearise it further, its contribution disappears. This is because the action of Miller dominant-pole compensation in this stage is rather elegant. It is not simply a matter of finding the most vulnerable transistor and setting it in treacle. As frequency rises and Cdom takes effect, negative feedback is no longer applied globally around the whole amplifier, which would include the higher poles, but instead is smoothly transferred to a purely local role in linearising the VAS. Since this stage is effectively a single transistor, a large amount of local NFB can be applied to it without stability problems. VAS distortion arises from the fact that the transfer characteristic of a common-emitter amplifier is curved, being a portion of an exponential. 6 This generates predominantly second-harmonic distortion, which in a closed-loop amplifier will increase at 6dBoctave with frequency. VAS distortion does not worsen for more powerful amplifiers because the stage traverses a constant proportion of its characteristic as the supply-rails are increased. This is not true of the input stage increasing output swing increases the demands on the transconductance amp as the current to drive Cdom increases. 5.2.1 Measuring VAS distortion in isolation. Isolating the VAS distortion for study requires the input pair to be specially linearised, to prevent its steeply-rising distortion characteristic from swamping the VAS contribution. This is done by heavily degenerating the input stage this also reduces open-loop gain, and the reduced global NFB factor exposes VAS non-linearity. See Fig 10, where the 6dBoctave slopes suggest an origin in the VAS. Distortion increases with frequency as Cdom rolls-off the global NFB factor. To confirm that this distortion is due solely to the VAS, it is necessary to find a method for experimentally varying VAS linearity while leaving all other circuit parameters unchanged. In a model amplifier this can be done simply by varying the V- voltage this varies the proportion of its characteristic over which the VAS swings, and thus only alters the effective VAS linearity, as input stage operation is not significantly affected. (Fig 10) The Vce of the input devices varies, but this has negligible effect. 5.2.2 VAS configurations. Various kinds of VAS are shown in Fig 11. It is important that the local open-loop gain of the VAS (that inside the local feedback loop closed by Cdom) be high, to linearise the VAS. Therefore a simple resistive collector load is unusable. Increasing the value of a resistive load to increase voltage gain decreases the VAS transistor Ic, reducing its gm and getting you back where you started. Local loop gain is enhanced by using an active load to increase the VAS collector impedance and thus increase the raw voltage gain either bootstrapping or a current-source do this effectively, though the current source is the usual choice. Both active-load techniques have another important role ensuring that the VAS can source enough current to drive the upper half of the output stage. If the VAS collector load was just a resistor to V, this capability would be lacking. The popular current source VAS is shown in Fig 11a. This works well, though the collector impedance and hence gain is limited by Early Effect and output stage loading. It is often stated that this topology provides current-drive to the output stage this is not really true. Once the local NFB loop has been closed by adding Cdom the impedance at the VAS output falls at 6dBoctave for frequencies above P1. With typical values the impedance is only a few kohm at 10kHz, and this hardly qualifies as current-drive. Fig 11b shows the bootstrapped equivalent. One drawback is that the increase in voltage gain is determined by the exact gain of the output stage, which is below unity and varies with loading. A more dependable form of bootstrapping is available if the amplifier incorporates a unity-gain buffer between the VAS collector and the output stage this is shown in Fig 11f, where R is the VAS collector load, defining VAS collector current by establishing the Vbe of the buffer transistor across itself. This voltage is constant, so R is bootstrapped and appears to the VAS collector as a constant-current source. A VAS current of 3mA is sufficient, compared with 6mA for the buffer stage. 5.2.3 VAS enhancements. The VAS distortion in Fig 10 shows the need for further improvement over that given by local NFB through Cdom, if our small-signal stages are to be distortion-free. The virtuous approach might be to try to straighten out the curved VAS characteristic, but in practice the simplest method is to increase the amount of local negative feedback around the VAS through Cdom. Equation 1 shows that LF OL gain (also the gain before Cdom is connected) is the product of input stage transconductance, TR4 beta and the collector impedance Rc. The last two factors represent the VAS gain and the local NFB can be augmented by increasing either. So long as Cdom remains the same, the global feedback factor at HF is unchanged and so stability is not affected. The effective beta of the VAS can be substantially increased by adding an emitter-follower. (Fig 11c) Adding an extra stage requires thought, for if additional phase-shift is introduced, the global loop stability will suffer. Here the extra stage is inside the Cdom Miller- loop and so there is little likelihood of trouble from this. The function of such an emitter-follower is sometimes described as buffering the input stage from the VAS but this is quite wrong its true function is VAS linearisation by enhancing local NFB through Cdom. Alternatively the VAS collector impedance can be further increased to get more local gain. This can be done with a cascode configuration- (see Fig 11d) but this technique is only useful when the VAS is not loaded by a seriously non-linear impedance. such as the input of a Class-B output stage. See section 5.4. The non-linear loading renders cascoding largely cosmetic unless a Class-A stage buffers the VAS collector from the output stage, as in Fig 11e. When a VAS-buffer is added, the drop in distortion is dramatic, as it is for the beta-enhancement method. The gain increase is ultimately limited by Early effect in the cascode and current-source transistors, and more seriously by the loading effect of the next stage, but it is of the order of 10 times and gives a useful effect. Fig 12 plots the distortion of a model amplifier with 100 Ohm input pair degeneration resistors, showing the extra distortion from a simple VAS. However, the beta-enhanced version has the THD submerged in the noise floor for most of the audio band, being well below 0.001. I think this justifies my contention that input-stage and VAS distortions need not be problems we have all but eliminated Distortions 1 and 2 from the list of eight. The beta-enhancing emitter-follower is slightly simpler than the buffered-cascode, but the cost difference is tiny. When wrestling with these kind of financial decisions it is as well to remember that the small-signal section of an amplifier usually represents less than 1 of the total cost, including mains transformer and heatsinks. Although the two VAS-linearising approaches look very different, the basic strategy of increased local feedback through Cdom is the same. Either method linearises the VAS into invisibility. 5.3 DISTORTION 3. The almost universal choice in semiconductor power amplifiers is a unity-gain output stage, specifically a voltage-follower. The most common output stages are shown in Fig 13 two versions of the double- emitter-follower, (EF) the Complementary Feedback Pair (CFP), and a source-follower FET output. The use of power FETs in output stages is often advocated. However, after much investigation, I have found the conclusion inescapable that FETs suffer not only from poor basic linearity, due to low gm, but also a crossover region that is inherently more jagged than BJTs. It is not possible to explore this in detail here, but see 7,8 A fundamental factor in determining output-stage distortion is the Class of operation. Apart from its inherent inefficiency, Class-A is ideal, having no crossover or switchoff distortion. Distortions 4, 5, 6 and 7 are direct results of Class-B operation and also disappear from a Class-A design. Distortion 1 (input-stage), Distortion 2 (VAS), and Distortion 3a (output-stage large-signal non-linearity) remain, however. Of those Class-A designs which have been published or reviewed, it is notable that the distortion produced is still significant. This need not be so see 9 for a Blameless amplifier biased into Class A, giving THD below 0.002, 10 Hz-20 kHz. It is not generally appreciated that moving into Class-AB, by increasing the quiescent current, does NOT simply trade efficiency for linearity. If the output power is above the level at which Class-A operation can be sustained, THD increases as the bias advances into AB operation. This is due to so-called gm-doubling (ie the voltage-gain increase caused by both devices conducting simultaneously in the centre of the output-voltage range, in the Class-A region) putting edges into the distortion residual that generate high-order harmonics much as under-biasing does. This vital fact is little known, presumably because gm-doubling distortion is at a relatively low level and is obscured in most amplifiers by other distortions. This is demonstrated in Fig 14a,b,c showing THD residuals for under- biasing, optimal, and over-biasing of a 150W8-Ohm amplifier at 1kHz. All non-linearities except Distortion 3 (output stage) have been eliminated. The over-biased case had its quiescent current increased until the gm-doubling edges in the residual had a 1:3 markspace ratio, and so was in Class A about one quarter of the time. All three traces were averaged 64 times to reduce noise the distortion in 14b is normally invisible in a 80 kHz measurement bandwidth. The RMS THD reading for Fig 14a was 0.00151, for 14b 0.00103, and for 14c 0.00153 Spectrum analysis of Fig 14c shows the higher harmonics to be at least 10dB greater than those for the optimal Class-B case, and comparable with 14a. In short, Class-AB offers lower distortion than Class-B below the AB threshold but more above it. Distortion 3a is the Large-Signal Non-linearity (LSN) that is produced by in both Class-A and B output stages, ultimately because of the large current swings in the active devices in bipolars, but not FETs, large collector currents reduce beta, leading to drooping gain at large output excursions. It excludes crossover and switchoff phenomena. Distortion 3b is classic crossover distortion, resulting from the non-conjugate nature of the two output halves. Distortion 3c is switchoff distortion, generated by the output devices failing to turn off quickly and cleanly at high frequencies, and is strongly frequency-dependent. The contributions of 3b and 3c to Distortion 3 occur in Class-B only. The linearity of the open-loop output stages in Fig 13 with typical values are shown in Figs 15,16,17. These diagrams were generated by SPICE, plotting incremental output gain against output voltage, with load resistance stepped from 16 to 2 Ohms, which I hope is the lowest impedance that feckless loudspeaker designers will throw at us. These plots have come to be known as wingspread diagrams, from their birdlike appearance. The power devices were Motorola MJ802 and MJ4502, which are more complementary than many so-called pairs, and minimise distracting large-signal asymmetry. The quiescent conditions are in each case set to minimise peak-to-peak gain deviations in the crossover region for 8-Ohm loading. The EF output stage. I have deliberately called this the Emitter-Follower (EF) rather than Darlington configuration, the latter implying an integrated device with driver, output, etc in one ill-conceived package. In the EF topology the input is transferred to the output via two base-emitter junctions in series, with 100 voltage feedback applied to each device separately to create cascaded emitter-followers. Fig 13a shows the most prevalent version (Type I) with driver emitter resistors R1,2 connected to the output rail. Type II uses one shared resistor Rd, and this improves HF switchoff (Fig 13b) basic linearity is the same, see Fig 15. The crossover region width is approx 10 V, and optimal bias 2.86 V. .The CFP output stage. The other major type of bipolar complementary output is the Complementary Feedback Pair (CFP) or Sziklai Pair, seen in Fig 13c. The drivers now compare the output voltage with that at the stage input. Wrapping the outputs in a local NFB loop gives better linearity than EF versions with 100 feedback applied separately to driver and output transistors. The CFP topology is generally considered to show better thermal stability than the EF, because the Vbe of the output devices is inside the local NFB loop, and only the driver Vbe affects the quiescent conditions. The true situation is rather more complex. 10,11,12 The output gain plot is shown in Fig 16 Fourier analysis shows the CFP generates less than half the LSN of an emitter-follower stage. (See Table 4) It is hard to see why this topology is not more popular. The crossover region is much narrower, at about 1V. When under- biased, this appears on the distortion residual as narrower spikes than those from an emitter-follower output. Optimal bias here is 1.296V. Combining one of these stages with a distortionless small-signal section, and applying 30 dB of global NFB, we might expect an amplifier with vanishingly small THD. In fact, crossover distortion remains at HF, due to the difficulty of linearising high-order distortion with feedback that reduces with frequency Fig 18 shows the typical Blameless performance. 5.3.1 Large-Signal Nonlinearity. (Distortion 3a) LSN increases as load impedance decreases. In a typical output stage loaded with 8 Ohms or more, closed-loop LSN is negligible, the THD residual being almost entirely high-order crossover artifacts that are reduced less by NFB. As load impedance falls below 8 Ohms, third- harmonic appears in the residual, and soon dominates. The BJT output gain plots reveal that LSN is compressive, ie voltage gain falls with higher outputs. The fundamental reason for this gain-droop is the fall in output- transistor beta as Ic increases. 13 In the Emitter-Follower (EF) topology, beta falloff draws more output-base current from the driver emitter, pulling driver gain down further from unity this is the change in gain that affects the overall transfer ratio. Output-device gain is not directly affected, as given zero source impedance, beta does not appear in the equation for emitter-follower gain. As further evidence: In SPICE simulation, driving the output bases directly from zero- impedance voltage-sources (rather than drivers) abolishes the gain droop effect. The cause is in the output devices, but the effect is in the drivers. The SPICE Gummel-Poon model can be altered so output device beta does not drop with Ic (increase parameter IKF) and once more gain-droop does not occur, with drivers present. Measured LSN levels correlate well with the degree of beta-falloff shown in manufacturers data sheets. This holds for many different BJTs produced over the last 30 years. LSN does not appear to afflict FET outputs, which have no equivalent beta-falloff mechanism. See Fig 17 where the wings of the FET gain plot do not turn downwards at large outputs. LSN may be reduced in two ways: Use output devices that sustain beta well as Ic increases. The 2SC3281 and 2SA1302 transistors (Toshiba, Motorola) show much less beta-droop than average, and 4-Ohm distortion is reduced by about 1.4 times. Use two or more output devices in parallel even though this is unnecessary for handling the power output. Falloff of beta depends on collector current, and if two output devices are connected in parallel, the collector current divides in two between them, and beta-droop is much reduced. Doubling devices reduces distortion by about 1.9 times. These two techniques may be combined by using double sustained-beta devices. Doubled device results are shown in Fig 19 distortion at 80W4 Ohm has halved from 0.009 to 0.0045. 8 and 4 Ohm traces are now very close, the 4 Ohm THD being only 1.2 times higher. 5.3.2 Crossover distortion. (Distortion 3b) In a field like Audio where consensus of any sort is rare, it is widely acknowledged that crossover distortion is the worst problem afflicting Class-B power amplifiers. The pernicious nature of crossover distortion is that it occurs over a small part of the transfer characteristic, and so generates high-order harmonics. Worse still, this range is around the zero-crossing, so it is present at all levels, the THD percentage potentially increasing as output level falls, threatening very poor linearity at low powers. I investigated crossover distortion to see if it really did increase with decreasing output level in a Blameless amplifier. One problem is that an optimally-biased Blameless amplifier has such a low level of distortion at 1 kHz (0.001 or less) that the crossover artifacts are barely visible in circuit noise, even if low-noise techniques are used. Thus the THD percentage of the noise-plus-distortion residual is bound to rise with falling output, for the noise contribution remains constant this is the lowest line in Fig 20. To circumvent this, the amplifier was deliberately underbiased by varying amounts to generate ample crossover spikes these upper traces also rise as level falls, but Fig 20 shows that the THD percentage increases more slowly as level falls. Both EF and CFP output stages give similar results whatever the degree of underbias, THD increases by about 1.6 times as the output voltage is halved. In other words, reducing the output power from 25 W to 250 mW, which is pretty drastic, only increases THD by six times, and there is no sign of it increasing uncontrollably at low levels. Distortion versus level was also investigated at high frequencies, ie above 1 kHz where there is more THD to measure and optimal biasing can be used. Fig 21 shows THD versus level for the EF stage at a selection of frequencies Fig 22 shows the same for the CFP. Neither shows a sudden rise in percentage THD with falling level, though it is noticeable that the EF gives a good deal less distortion at lower power levels around 1 W. This is an unexpected observation, and is probably due to the greater width of the EF crossover region. To further get the measure of the problem, Fig 23 shows how HF distortion is greatly reduced by increasing the load resistance, providing further confirmation that almost all the 8 Ohm distortion originates as crossover in the output stage. The amount of crossover distortion produced depends crucially on optimal quiescent adjustment, so the thermal compensation used to stabilise this against changes in ambient temperature and power dissipation must be accurate. Investigation shows that the critical parameter is not quiescent current as such, but rather Vq, the quiescent voltage between the output device emitters see Fig 13. In both EF and CFP output stages, changing Re from 0.1 to 0.47 Ohms alters the optimal Iq considerably, but the values of Vbias and Vq barely change. Thus the voltage across the transistor base-emitter junctions and Res is what counts, not the resulting Iq. Selecting Re 0R1 for maximum efficiency is probably the over-riding consideration. This has the additional benefit that if the stage is erroneously over-biased into Class AB, the resulting gm-doubling distortion will only be half as bad as if the more usual 0R22 values had been used for Re. 5.3.3 Switchoff distortion. (Distortion 3c) This depends on the speed characteristics of the output devices and on the output topology. For topologies, the critical factor is whether the output stage can reverse-bias the output device base-emitter junctions to maximise the speed at which carriers are swept out, so the device is turned off quickly. The only conventional configuration that can reverse-bias the output junctions is the EF Type II, described below. The EF Type II configuration in Fig 13b is at first sight merely a pointless variation on Type I, but its valuable property is that the shared driver emitter-resistor Rd, with no output-rail connection, allows the drivers to reverse-bias the base-emitter junction of the output device being turned off. Assume that the output voltage is heading downwards through the crossover region the current through Re1 has dropped to zero, but that through Re2 is increasing, giving a voltage-drop across it, so TR4 base is caused to go more negative to get the output to the right voltage. This negative excursion is coupled to TR3 base through Rd, and can reverse bias it by up to -0.5V at 8 Ohms, increasing to -1.6V at 4-Ohms. Speed-up capacitor Cs improves this action, preventing the charge-suckout rate being limited by the resistance of Rd. A 1 uF speedup capacitor can half the THD at 40kHz, implying cleaner switchoff. The EF Type I has a similar voltage drop across Re2, but the connection of R1,R2 to the output rail prevents this from reaching TR3 base instead TR1 base is reverse-biased as the output moves negative. Charge-storage in the drivers is usually not a problem, so this does little good. Likewise, a CFP stage can only reverse-bias the driver bases, and not the outputs. The second influence on turnoff is the value of the driver emitter or collector resistors the lower they are the faster the stored charge can be removed. Applying these two criteria can reduce HF distortion markedly, but of equal importance is that it minimises overlap of output conduction at HF, which if unchecked gives an inefficient and potentially destructive increase in supply current. 14 5.4 DISTORTION 4: VAS loading distortion. Distortion 4 is that which results from the loading of the Voltage Amplifier Stage (VAS) by the non-linear input impedance of the Class-B output stage. The VAS collector impedance tends to be high, rendering it vulnerable to non-linear loading unless buffered or otherwise protected. The VAS is routinely (though usually unknowingly) linearised by applying local negative-feedback via the dominant-pole Miller capacitor, and this is a powerful argument against any other form of compensation. If VAS distortion still adds significantly to the amplifier total, then the local open-loop gain of the VAS stage can be raised to increase the local feedback factor. The obvious method is to raise the impedance at the VAS collector, and so the gain, by cascoding. However, if this is done without buffering the VAS, the loading will render the cascoding almost completely ineffective. A VAS-buffer eliminates this problem. The VAS collector impedance, while high at LF compared with other circuit nodes, falls with frequency as Cdom takes effect, so Distortion 4 is usually only visible at LF. It is also often masked by the increase in output stage distortion above dominant-pole frequency P1 as the amount of global NFB reduces. The fall in VAS impedance with frequency is demonstrated in Fig 24, obtained from a SPICE conceptual model.15 The LF impedance is that of the VAS collector resistance, but halves with each octave above P1. By 3 kHz the impedance is down to 1Kohm, and still falling. Nevertheless, it remains high enough for the input impedance of a Class-B output stage to significantly degrade linearity, the effect being shown in Fig 25. In 16 it was shown that as an alternative to cascoding, the VAS may be effectively linearised by adding an emitter-follower within the VAS local feedback loop, increasing the local NFB factor by raising effective beta rather than the collector impedance. As well as good VAS linearity, this establishes a much lower VAS collector impedance across the audio band, and is much more resistant to Distortion 4 than the cascode version. VAS buffering is not required, so this method has a lower component count. The only drawback is a greater tendency to parasitics near negative clipping, when used with a CFP output stage. Fig 26 confirms that the input impedance of an optimally-biased EF Type I output stage is highly non-linear even with an undemanding 8-Ohm load, the impedance varies by 10:1 over the output voltage swing. The Type II EF output has a 50 higher impedance around crossover, but the variation ratio is greater. CFP output stages have a more complex variation including a steep drop to below 20 KOhm around the crossover region. 5.5 DISTORTION 5: Decoupling errors. Most amplifiers incorporate small electrolytics (10 - 220uF) between each rail and ground to ensure HF stability. As a result rail-voltage variations cause current to flow into the ground. If an unregulated power supply is used, (and there are almost overwhelming reasons for doing so) the rails have non-zero AC impedance and bear voltage variations due to amplifier load currents as well as 100Hz ripple. In Class-B, the supply-rail currents are halfwave- rectified sine pulses, and if they contaminate the signal then distortion is badly degraded. The usual route for intrusion is via decoupling grounds shared with input or feedback networks, and a separate decoupler ground back to the star point is usually a complete cure.(Note that the star-point should be defined on a short spur from the heavy connection joining the reservoirs using B as the star point introduces hum due to the large reservoir-charging current pulses passing through it) Fig 27 shows the effect on an otherwise Blameless amplifier handling 60W8-Ohm, with 220uF rail decouplers at 1kHz distortion has increased by more than ten times, which is quite bad enough. However, at 20Hz the THD has increased 100-fold, turning a very good amplifier into a profoundly mediocre one by one misconceived connection. 5.6 DISTORTION 6: Induction from supply rails. Like Distortion 5, this stems directly from the Class-B nature of the output stage. The supply-rail currents are halfwave-rectified sine pulses, which can readily crosstalk into sensitive parts of the circuit by induction. This is very damaging to the distortion performance Fig 28 shows a large extra distortion component rising at about 6dBoctave. The distortion may intrude into the input circuitry, the feedback path, or even the output cables. This inductive effect was first publicised by Cherry 17. though the effect has been recognised by some practitioners for many years.18 This effect, apparently unfamiliar to most designers, seems to be a widespread cause of unnecessary distortion. The contribution of Distortion 6 can be reduced below the noise floor. Firstly, rigorously minimise loop areas in the input and feedback circuitry, ie keep each signal line very close to its ground. Secondly, limit the ability of the supply wiring to establish magnetic fields in the first place, by minimising the area of circuit loops carrying half- wave pulses. 5.7 DISTORTION 7: NFB Takeoff point distortion. There is a subtle trap in applying global NFB. Class-B output stages are awash with large halfwave-rectified currents, and if the feedback takeoff point is in slightly the wrong place, these currents contaminate the feedback signal, making it an inaccurate representation of the output voltage, and so introducing distortion Fig 29 shows the problem. At these current levels, all wires and PCB tracks must be treated as resistances, and it follows that point C is not at the same potential as point D whenever TR2 conducts. If feedback is taken from D, then a clean signal is established here, but the signal at output point C has a half- wave rectified sinewave added to it, due to the resistance C-D. The output will be distorted but the feedback loop does nothing about it as it does not know about the error. Fig 30 shows the practical result for an amplifier driving 100W into 8-Ohm. The resistive path C-D that did the damage was a mere 6mm length of heavy-gauge wirewound resistor lead. To eliminate this distortion is easy, once you are alert to the danger. Taking the NFB feed from D is not advisable as D is not a mathematical point, but has a physical extent, inside which the current distribution is unknown. Point E on the output line is much better, as half-wave currents do not flow through this arm of the circuit. 5.8 DISTORTION 8: Capacitor distortion. It seems to be little-known that electrolytic capacitors generate distortion when they have a significant AC voltage across them. It is even less well known that non-electrolytics show a similar effect in applications like Sallen Key high-pass filters. This has nothing to do with Subjectivist hypotheses about mysterious non-measurable effects this is all too real. Electrolytic distortion usually arises in DC blocking circuitry with significant resistive loading. Fig 31 shows the distortion for a 47uF 25V capacitor driving 8 Vrms into a 680 Ohm load. The distortion is a mixture of second and third harmonic, rising rapidly as frequency falls, at something between 12 and 18 dBoctave. The great danger of this mechanism is that serious distortion begins while the response roll-off has barely begun here THD reaches 0.01 at 20 Hz when the response is only down 0.2 dB. The voltage across the capacitor is 2.6 Volts peak, and this is a better warning of danger than the amount of roll-off. THD roughly triples as the applied voltage doubles the factor varies with capacitor voltage rating. The mechanism by which capacitors generate this distortion is unclear. Dielectric absorption appears to be ruled out as this is invariably modelled by adding linear components to the basic capacitor. Reverse biasing is not the problem, for DC biasing by up to 15V shows increased, not reduced distortion. Non-polarised electrolytics show the same effect but at a much greater AC voltage, typically giving the same distortion at one-tenth the frequency of a conventional capacitor of the same value cost and size generally rules out their use to combat this effect. The best solution is simply to increase the capacitor value until the LF distortion remains flat to 10 Hz. A small roll-off in the audio band is not a sufficient criterion. While the bandwidth of a system must be defined, using electrolytics in high-pass filters is never good design practice, because the tolerances are so large it is now clear they generate distortion as well. Capacitor distortion in DC-coupled power amplifiers is most likely to occur in the feedback network blocking capacitor. (C2 in Fig 1) The input capacitor C1 usually feeds a high impedance, but the feedback arm must have low resistances to minimise noise and DC offset. The feedback capacitor is thus an electrolytic, and if not quite large enough the THD shows a characteristic LF rise. Such LF rises are common, but need never occur. Capacitor distortion is usually the reason, but Distortion 5 (Rail Decoupling Distortion) can also contribute. They can be distinguished because Distortion 5 typically rises by only 6 dBoctave as frequency decreases, rather than 12 - 18 dBoctave for capacitor distortion. The distortion generated by an AC-coupled amplifiers output capacitor is more serious, as it is not confined to low frequencies. A 6800uF output capacitor driving 40 W into an 8-Ohm load gives mid-band third-harmonic distortion at .0025, as shown in Fig 32. This is five times more than a Blameless amplifier generates mid-band. Also, the LF THD rise is much steeper than in the small-signal case. 6: THE BLAMELESS AMPLIFIER CONCEPT. The basis of the design methodology is really the old clich Make the amplifier as linear as possible before applying Negative Feedback. In 5.1 and 5.2 it was demonstrated that the distortion from the small-signal stages can be made negligible compared with output-stage distortion, by balancing the input pair and adding local negative feedback to input and VAS stages. Likewise, 5.4 - 5.8 showed that Distortions 4 to 8 can be effectively eliminated by little-known but straightforward layout precautions. This leaves Distortion 3, in its three components, as the only distortion that is in any sense unavoidable, as Class-B stages free from crossover artifacts are so far beyond us. This leads to the concept of what I have called a Blameless Amplifier, the name being chosen to emphasise that the remarkably low THD comes from the avoidance of errors rather than from fundamental advances in circuitry. A Blameless Amplifier gives a distortion benchmark that varies relatively little if confined to 8-Ohm loading. It forms a well-defined point of departure for more ambitious and radical amplifier designs. So far I have used it as a basis for an extremely linear Class-A design 9. a Trimodal amplifier (so-called as it operates in any of the modes A, AB and B, as required) 19. and a Load-Invariant amplifier that minimises the THD increase with sub-8 Ohm loads.20 Above: Fig 33 shows the circuit of a Blameless Class-B amplifier. CLICK ON PICTURE FOR HIGHER-RES VIEW. Note that Fig 33 is only slightly more complex than the standard amplifier in Fig 1. The input pair now has a current-mirror to ensure input balance, and has undergone constant-gm degeneration, running at about 3.5 times the tail current of Fig 1. The VAS is linearised by addition of beta-enhancer TR12, and the remaining topological distortions were eliminated by careful layout. Performance is shown in Fig 18. I am aware that the distortion figures given here are unusually low for power amplifiers, but I would emphasise they are not freak results nor dependant on component selection. The only aspect of the linearity directly affected by device characteristics is distortion below 8 Ohms, as described in 5.3.1. So far more than twenty thousand 260W8-Ohm amplifiers based on the Blameless methodology have been built, with completely repeatable performance. 7. CONCLUSIONS. In this paper I have attempted a concise but complete account of power amplifier distortion. The linearity obtainable with relatively conventional circuitry is far better than one would suspect. It also shows that if power amplifier distortion is to be eradicated entirely, future work must be focused on the output stage distortions. DIAGRAM CAPTIONS. Fig 1: Fig 1a is the genericLin power amplifier circuit, with typical component values. 1b shows the small-signal Class-A output stage that replaces TR6-9 to make a model amplifier. Fig 2: The measured open-loop gain for Fig 1. Closed-loop gain is 27 dB, so feedback factor is easily calculated. 535b Fig 3: Generic amplifier THD plot, for 8 and 4 Ohm loading. Measurement bandwidth always 80 kHz, unless stated otherwise. Fig 4: Input stage transconductance against input voltage, for varying emitter degeneration resistances. Gain is lower but more constant for higher values. Fig 5: Input pair distortion from model amplifier. HF distortion is reduced as pair approaches balance, and is least when current- mirror enforces balance. 279b Fig 6: Test circuit for isolation of input distortion. Note the opamp works between 0V and -30V rails. Fig 7: Input distortion in isolation, showing that even a small Ic imbalance seriously increases distortion. Rise in curves below -10 dBu is due to noise floor. 223b Fig 8: Input stages, showing how value of R2 sets Ic balance. The third version with a degenerated current-mirror enforcing balance, gives the best results. Fig 9 The constant-gm degeneration technique. Both stages have the same transconductance, but the degenerated version is ten times more linear. Fig 10: VAS distortion in isolation, showing its reduction as the negative supply rail voltage is increased. Fig 11: VAS configurations. 11a,b show the two standard topologies. 11c,d are two methods for increasing local NFB through Cdom. 11e,f show VAS buffering. Fig 12: THD plot for a model amplifier at 15 Vrms. The middle trace shows an amplifier based on the small-signal section of Fig 33 the upper shows the extra VAS distortion without beta- enhancer TR12. The bottom trace is the distortion of the Audio Precision test system note the step at 20 kHz. 578b Fig 13: Standard Emitter-Follower, CFP, FET source-follower output stages. Fig 14: 14a: THD residual for underbiased Class-B, with spikes. 14b: Optimal-bias Class-B, showing discontinuity at crossover that cannot be removed. 14c: Class AB. Note the edges introduced by gm-doubling. Fig 15: Incremental gain diagram for Emitter-Follower output stages, loading from 16 to 2 Ohms Fig 16: Incremental gain diagram for CFP output stage, loading from 16 to 2 Ohms Fig 17: Incremental gain diagram for FET source-follower output stage, loading 16 to 2 Ohms. Fig 18 THD plot for a Blameless Class-B amplifier, 40W into 8 Ohms. Invar 1a. Fig 19 Large Signal Nonlinearity reduction by using sustained-beta output devices, doubled. 20W into 8 Ohms. Invar 23a. Fig 20 Crossover distortion with output stage underbiased by varying amounts. Lowest curve is for optimal biasing, and is essentially noise. 550 Fig 21 Crossover distortion at increasing frequencies for EF output stage. Note low-distortion area below -15 dB. (ref 25W8 Ohm) 551b Fig 22 Crossover distortion at increasing frequencies for CFP output stage. Low-distortion area is absent. 552b Fig 23 Crossover distortion under light loading. 68 Ohms is sufficient to produce measurable crossover. 541a Fig 24 The VAS collector impedance falls as frequency increases, due to local NFB through Cdom. Fig 25 VAS loading (Distortion 4) is present below 2 kHz if no measures to deal with it are taken. Fig 26 The varying input impedance of an EF output stage. Fig 27: Severe effect of misconnected rail decoupling: Distortion 5. Fig 28: Induction of half-wave currents: Distortion 6. Fig 29: Principle of NFB takeoff-point error: Distortion 7. Fig 30: The effect of NFB Takeoff-Point distortion. Fig 31: Electrolytic capacitor non-linearity for small sizes, eg in NFB arm: Distortion 8. Fig 32: Distortion from large electrolytic used as amplifier output capacitor: Distortion 8. 564a Fig 33: Circuit of Blameless power amplifier. Circuit changes from Fig 1 are minor. REFERENCES. 1 Lin, H C Transistor Audio Amplifier Electronics, Sept 1956, p173 2 Feucht Handbook of Analog Circuit Design Academic Press 1990, p256. (Pole-splitting) 3 Stocchino,G Letters, Electronics World, July 1995, p597. 4 Gray Meyer Analysis Design of Analog Integrated Circuits. Wiley 1984, p194. (tanh law of simple pair) 5 Gray Meyer Ibid, p256. (tanh law of current-mirror pair) 6 Gray Meyer Ibid, p251 (VAS law is portion of exponential) 7 Self, D Audio Power Amplifier Design Handbook. Newnes 1996, p231. ISBN 0-7506-2788-3 (poor FET linearity) 8 Self, D FETs vs BJTs- the linearity competition. Electronics Wireless World, May 1995 p387. (poor FET linearity) 9 Self, D Distortion In Power Amplifiers, Part 8. Electronics Wireless World, March 1994, p225 (Class A amp) 10 Self, D Thermal dynamics of Power Amplifiers: I Electronics World, May 1996, p410. 11 Self,D Thermal dynamics of Power Amplifiers: II Electronics World, June 1996, p481. 12 Self,D Thermal dynamics of Power Amplifiers: II Electronics World, Oct 1996, p754. 13 Self, D Load Invariant Audio Power Electronics World, Jan 1997, p16 (Beta droop) 14 Self, D Distortion In Power Amplifiers: Part 5. Electronics World, Dec 1993, p1011. (HF switchoff distortion losses) 15 Self, D Audio Power Amplifier Design Handbook. Newnes 1996, p128. ISBN 0-7506-2788-3 (VAS linearisation reduces collector impedance) 16 Self, D Distortion In Power Amplifiers: Part 3. Electronics World, Oct 1993, p820. (VAS linearisation) 17 Cherry, E A New Distortion Mechanism In Class-B amplifiers. JAES May 1981, p237. (Inductive distortion) 18 Baxandall,P Private communication, 1995 19 Self, D A Trimodal Power amplifier: I Wireless World, June 1995, p462 20 Self, D Load-Invariant Audio Power Electronics Wireless World, Jan 1997, p16 Douglas Self, London, Jan 1997. Words 9441The license information in the softkey, hardkey and VT hardware are all remotely upgradable. USB Hardkey for Multi-Instrument Series US39.95 Free Express Shipping It does not need a driver to run and thus is hassle free. It will be initialized to the license level purchased. With this option, you can run the software on the registered computer with the softkey, and on any computer with the hardkey. Full Package Pro all add-on modules, FREE upgrade for the same license level for life License Options: 1) Softkey activated license (locks to the registered computer) 2)VT hardware activated license (locks to the purchased VT hardware) Optionally, a USB hardkey (locks to the hardkey) can be purchased per softkey or VT hardware activated license 1. Introduction Multi-Instrument is a powerful multi-function virtual instrument software. It is a professional tool for time, frequency and time-frequency domain analysis. It supports a variety of hardware ranging from sound cards which are available in almost all computers to proprietary ADC and DAC hardware such as NI DAQmx cards, VT DSOs, VT RTAs and so on. It consists of the following instruments and functions. Oscilloscope Digital Oscilloscope Transient Recorder Data Recorder Voltmeter Lissajous Plot Digital Filters Persistence Mode Equivalent Time Sampling Signal Generator Function Generator Arbitrary Generator Burst Generator White Noise Generator Pink Noise Generator MultiTone Generator MLS Generator Musical Scale Generator DTMF Generator Frequency Sweep Amplitude Sweep Fade InFade Out DDS amp Streaming Modes DC Offset supported Multimeter Voltmeter, SPL Meter, Frequency Counter, RPM Meter, Counter, Duty Cycle Meter, FV Meter Spectrum Analyzer Amplitude Spectrum Analyzer Power Spectrum Analyzer Real Time Analyzer Octave Analyzer Phase Spectrum Analyzer Correlation Analyzer Freq. Response Measurement Distortion Analyzer Noise Analyzer Harmonics Analyzer Dynamic Signal Analyzer Coherence Measurement Transfer Function Measurement Impulse Response Measurement Spectrum 3D Plot Waterfall Plot Spectrogram Vibrometer Displacement, Velocity, Acceleration Conversion Data Logger 88 Derived Data Point Logger 151 Derived Data Points 16 User Defined Data Points Device Test Plan User Defined Plan 8 X-Y Plots 1 Test Report LCR Meter Inductor Meter Capacitor Meter Resistor Meter Impedance Meter DDP Viewer Display Derived Data Points HH, H, L, LL Alarming Software Customization amp Development Most Flexible Configuration ActiveX Automation Supported vtDAQ amp vtDAO Open Interfaces VC, VB, VC, Labview Samples System Requirement Windows XPVISTA7810, 32 or 64 bit, screen resolution 1024600 or higher. ADCDAC Hardware supported 81624 bit Windows compatible sound card (MMEASIO driver) NI DAQmx compatible cards VT DSO F1H1H2H3 series VT DAQ 12 series, VT DAO 1 series . Language supported English, French, German, Italian, Spanish, Portuguese, Russian Simplified Chinese, Traditional, Chinese, Japanese, Korean.
An- สารานุกรม ของ การซื้อขาย กลยุทธ์ โดย เจฟฟรีย์ โอเว่น - - แคทซ์ และ มาดอนน่า - แมค
Forex- MetaTrader - กวดวิชา